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k-NN Graph

➔ What is k-NN graph ?

Vector dataset

The k most similar vectors
are connected to each other

1Preliminaries

Vector ⇔ Node

2-NN Graph consisting of 5 vectors



➔ Applications - Visualization

2Preliminaries

Jian Tang, Ming Zhang, and Qiaozhu Mei, 2016. Visualizing Large-scale and High-dimensional Data. In WWW
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➔ Applications - Clustering

Preliminaries

https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/
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➔ Applications - Recommender systems

Preliminaries

https://opensearch.org/blog/Building-k-Nearest-Neighbor-%28k-NN%29-Similarity-Search-Engine-with-Elasticsearch/
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➔ Large-scale real world datasets

Preliminaries

 ( Deep1B, SIFT1B, SPACEV, … )



➔ Related works that build graphs in distributed environment

3Preliminaries

- NNDMR

        ●   Simple distributed version of NN-Descent

        ●   MapReduce implementation

        ●   Massive data exchange problem

        ●   Impractical when handling large-scale data

- VRLSH

        ●   LSH based divide-and-conquer method

        ●   Spark implementation

        ●   Graph fragmentation problem

        ●   Requires additional graph refinement
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- NNDMR

        ●   Simple distributed version of NN-Descent

        ●   MapReduce implementation

        ●   Massive data exchange problem

        ●   Impractical when handling large-scale data

- VRLSH

        ●   LSH based divide-and-conquer method

        ●   Spark implementation

        ●   Graph fragmentation problem

        ●   Requires additional graph refinement

Solves both problems
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Proposed Method
➔ MRDF (Multiway Random Division Forest)

4

ρ : Multiway-dividing factor

→ Each node have ρ children nodes

α : Subset size limit

→ The number of vectors in each leaf node

               is smaller than α
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➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size <  α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most 
     similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
     in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
     merge the subgraphs
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➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size <  α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most 
     similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
     in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
     merge the subgraphs

Fragmented graph  → Might not connect to actual nearest neighbors



➔ Refine graph by merging various trees

7Proposed Method

- Reflects the graph information built from orange box

- Reflects additional graph information based on 
    another tree topology
        → improves node connection

- Accuracy always increases as trees are added

- How to merge?
        → Top-K nodes ∈ (Previous K nodes ∪ New k nodes)
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➔ Refine graph by merging various trees

7Proposed Method

Graph from another tree

- Reflects the graph information built from orange box

- Reflects additional graph information based on 
    another tree topology
        → improves node connection

- Accuracy always increases as trees are added

How to merge?
    → Top-K nodes ∈ (Previous-K nodes ∪ New-K nodes)



➔ Improves node connection by coarse-grained partitioning

14

Larger α divides the area into larger units

    → Decrease the depth of the tree

    → Increase connection within the subgraph

Proposed Method

α = 6

Exploit approximate algorithm to handle larger subsets

 Decrease in recall  <<  Decrease in running time

Decrease in recall  <<  Construct multiple trees



➔ Improves node connection by coarse-grained partitioning

14

Larger α divides the area into larger units

    → Decrease the depth of the tree

    → Increase connection within the subgraph

Exploit approximate algorithm to handle larger subsets

 Decrease in recall  <<  Decrease in running time

Decrease in recall  <<  Construct multiple trees

Proposed Method

All areas are smaller than 12

α = 12
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Experiments

Q1. Performance trade-off

➔ Does MRDF provides the best trade-off between the running time and the graph quality?

Q2. Scalability

➔ How well does MRDF scale up and out in terms of the data size and the number of machines?

Q3. Effect of parameters

➔ How do parameters α and ρ affect the running time and the output graph quality of MRDF?

21



Experiments
➔ Comparison of running time and recall with NNDMR / VRLSH

- Upper left position = high accuracy & fast speed

- Generally 95% or higher accuracy

- Up to 56% higher accuracy than Second Best

15



➔ Comparison of memory usage

16

- Lowest memory usage by MRDF

- VRLSH : Spark Implementation

                   (O.O.M even when processing 10M vectors)

Experiments



➔ The size of shuffled data (Disk usage)

17

- The gap varies up to 320 times depending on k

- NNDMR requires 170TB when processing 1B vectors

→ Occurs when gathering data that share the 

same key onto the same machine

→ Occurs disk and network I/Os

Shuffled data

Experiments



➔ Scalability of MRDF as data grows and the number of machines increases

18

- Relative Running Time : the time taken relative to 

the reference point(10M vectors, 2 machines)

- Almost close to the Ideal

Experiments



➔ Finding the best parameters

19

- Recall increases as α increases

           Larger α improves graph connection

- Load balancing problem with low ρ (2, 5)

           The number of machines used = 10

Experiments



➔ Terminating condition for MRDF

20

- τ : Graph convergence

              → Ratio of updated edges to total edges

- Terminate the algorithm when it is below the threshold τ

- Forms elbow point at 0.01 and reasonable accuracy

Experiments
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Conclusion

➔ Up to 7.6x faster

➔ Up to 56% better quality

➔ High scalability

➔ Handle billion-scale dataset

21



Thanks.


