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Preliminaries
=» What is k-NN graph ?

k—=NN Graph
Vector dataset 2-NN Graph consisting of 5 vectors
01
09 Vector & Node @
U3 >
04 The k most similar vectors
us are connected to each other




Preliminaries 2

=» Applications - Visualization
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Jian Tang, Ming Zhang, and Qiaozhu Mei, 2016. Visualizing Large-scale and High-dimensional Data. In WWW



Preliminaries 2
=» Applications - Clustering

https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/



Preliminaries 2

=» Applications - Recommender systems

entry point

=
query

https://opensearch.org/blog/Building-k-Nearest-Neighbor-%28k-NN%29-Similarity-Search-Engine-with-Elasticsearch/



Preliminaries

=» Large-scale real world datasets

n = 1000000000 —»

( Deep1B, SIFT1B, SPACEV, ---)



Preliminaries

=» Related works that build graphs in distributed environment

NNDMR
e Simple distributed version of NN-Descent
e MapReduce implementation
e Massive data exchange problem

e Impractical when handling large-scale data

VRLSH

LSH based divide-and-conquer method
Spark implementation
Graph fragmentation problem

Requires additional graph refinement



Preliminaries

=» Related works that build graphs in distributed environment

—  NNDMR - VRLSH
e Simple distributed version of NN-Descent e LSH based divide-and-conquer method
e MapReduce implementation e Spark implementation
4 Massive data exchange problem { Graph fragmentation problem
e Impractical when handling large-sgale data e Requires additional graph refinement

Solves both problems
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Proposed Method
=» MRDF (M R D F )

p : Multiway-dividing factor

— Each node have p children nodes

a : Subset size limit
Leaf !

— The number of vectors in each leaf node (<a)

is smaller than a

Leaf! Leaf ! Leaf !

(<a) (<a) (<a)



Proposed Method

=» Graph construction from single tree topology

1. Samples 3(= p) of the total nodes as a centroid

V(O). [

* X, 2. Remaining nodes are assigned to the centroid most
e similar to itself among each of the 3 centroids
Viy-X 21 Vi)

U 0)_‘,(0 1)_‘,(0’2) 3. The entire dataset is divided into 3 areas

o () ©(0,0)
e (0) ©{0,1)
'(1) ® (0,2)

4. For areas larger than 6(=a), 3 centroids are sampled
in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
merge the subgraphs

Each subset size < A(=6)



Proposed Method °

=» Graph construction from single tree topology

1. Samples 3(= p) of the total nodes as a centroid

° V(O)o &
3}. o * X, 2. Remaining nodes are assigned to the centroid most
A g S similar to itself among each of the 3 centroids
L 8O | vy X e\ v,

Tree paths Voo Voo Vo 3. The entire dataset is divided into 3 areas
e’ o
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24—

Each subset size < A(=6)

4. For areas larger than 6(=a), 3 centroids are sampled
in that area recursively

5. Repeat this process until all areas are smaller than 6

VR 6. Construct graphs independently on each area, and
merge the subgraphs




Proposed Method

=» Graph construction from single tree topology
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. For areas larger than 6(=

Each subset size < A(=6)

. Samples 3(= p) of the total nodes as a centroid

. Remaining nodes are assigned to the centroid most

similar to itself among each of the 3 centroids

. The entire dataset is divided into 3 areas

a), 3 centroids are sampled
in that area recursively

. Repeat this process until all areas are smaller than 6

. Construct graphs independently on each area, and

merge the subgraphs



Proposed Method

=» Graph construction from single tree topology

Tree paths |
® (0,0
20 200 G0 =
'gg ® {0,2) Leaf ! Leaf !
/ (<a) (<a)
GI

Each subset size < A(=6)



Proposed Method

=» Graph construction from single tree topology

° o e o
° e e X,
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Tree paths V(o,o)_V(o,l)_V(o’z)
e () ©(0,0) o/ o\*
® (0) ©(0,1)
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Gl
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Each subset size < A(=6)

1. Samples 3(= p) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= a), 3 centroids are sampled
in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
merge the subgraphs



Proposed Method

=» Graph construction from single tree topology
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. For areas larger than 6(=

Each subset size < A(=6)

. Samples 3(= p) of the total nodes as a centroid

. Remaining nodes are assigned to the centroid most

similar to itself among each of the 3 centroids

. The entire dataset is divided into 3 areas

a), 3 centroids are sampled
in that area recursively

. Repeat this process until all areas are smaller than 6

. Construct graphs independently on each area, and

merge the subgraphs



Proposed Method

=» Graph construction from single tree topology

‘troid

)yid most
ds

Tree paths |

®() (0,0

®(0) ©(0,1)

® (1) ©(0,2)
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Leaf] > sampled
(<a)

Depth 2 aller than 6

Leaf! Leaf !

(<a) (<a)

Leaf!

(<a)

23, and
Each subset size < A(=6)



Proposed Method

=» Graph construction from single tree topology

1. Samples 3(= p) of the total nodes as a centroid

VO ’ 6.‘)70 . . V(O). e .o .. .
S * Xe* Koo 2. Remaining nodes are assigned to the centroid most
() oVis | ® [ {0 ) . . . .
ne e o Sow ® - similar to itself among each of the 3 centroids
X
W ® eV * * X o V(l.) X o V<2)
RV o B o BV 3. The entire dataset is divided into 3 areas
TRy [xiney
o (0.2) , " 4. For areas larger than 6(=a), 3 centroids are sampled
in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
Q merge the subgraphs

Each subset size < A(=6)



Proposed Method

=» Graph construction from single tree topology

4 gu o m_— D o
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Each subset size < A(=6)

. For areas larger than 6(=

. Samples 3(= p) of the total nodes as a centroid

. Remaining nodes are assigned to the centroid most

similar to itself among each of the 3 centroids

. The entire dataset is divided into 3 areas

a), 3 centroids are sampled
in that area recursively

. Repeat this process until all areas are smaller than 6

. Construct graphs independently on each area, and

merge the subgraphs

Fragmented graph — Might not connect to actual nearest neighbors



Proposed Method

=» Refine graph by merging various trees

V() & i V7

. Viy, . e
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— Reflects additional graph information based on
—e *, another tree topology

— improves node connection

— Accuracy always increases as trees are added

— How to merge?
Vg 5 — Top-K nodes € (Previous K nodes U New k nodes)
RN




Proposed Method

=» Refine graph by merging various trees
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(1) (0.2) another tree topology

— improves node connection

— Accuracy always increases as trees are added

— How to merge?

— Top-K nodes € (Previous K nodes U New k nodes)




Proposed Method

=» Refine graph by merging various trees
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— Reflects additional graph information based on
another tree topology

— improves node connection

- Accuracy always increases as trees are added

— How to merge?

— Top-K nodes € (Previous K nodes U New k nodes)




Proposed Method

=» Refine graph by merging various trees
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Output

— Reflects the graph information built from orange box

— Reflects additional graph information based on
another tree topology

— improves node connection
— Accuracy always increases as trees are added

How to merge?

— Top-K nodes € (Previous-K nodes U New-K nodes)



Proposed Method
-)

Improves node connection by coarse—grained partitioning

14

—®— LocalGraphConstruction with NN-Descent

Tree paths

®() o(o,

® (0) (0,

e (1) (o,
(2)

0 20000
Size Limit = a

Larger a divides the area into larger units

40000

Relative Running Time

=>= LocalGraphConstruction with brute-force
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Recall

Exploit approximate algorithm to handle larger subsets

— Decrease the depth of the tree

Decrease in recall << Decrease in running time

— Increase connection within the subgraph

Decrease in recall << Construct multiple trees



Proposed Method "

=» Improves node connection by coarse-grained partitioning

—®— LocalGraphConstruction with NN-Descent

V() Vo oV’ o o =>= LocalGraphConstruction with brute-force
6
o o ° o X
V20 ] [ ]
oVi5 b e °
8 ® Vi3 ° 127
o o P e®
e evu X o 101

a=40000
a=2500

a=1250/ a=500 a=20000

All areas are smaller than 12

Relative Running Time
[0)]

2 12 o’
- a=10000
01 T T O ] 1 1 T T T
0 20000 40000 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Size Limit = a Recall

Larger a divides the area into larger units

Exploit approximate algorithm to handle larger subsets
— Decrease the depth of the tree

_ o Decrease in recall << Decrease in running time
— Increase connection within the subgraph

Decrease in recall << Construct multiple trees
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Experiments

Q1. Performance trade-off

=» Does MRDF provides the best trade-off between the running time and the graph quality?

Q2. Scalability

=» How well does MRDF scale up and out in terms of the data size and the number of machines?

Q3. Effect of parameters

=» How do parameters a and p affect the running time and the output graph quality of MRDF?

21



Experiments

=» Comparison of running time and recall with NNDMR / VRLSH

Recall
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Upper left position = high accuracy & fast speed

Generally 95% or higher accuracy

Up to 56% higher accuracy than Second Best
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Experiments

=» Comparison of memory usage

Memory Usage (GB)

Memory Usage (GB)
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® MRDF = NNDMR VRLSH

Lowest memory usage by MRDF

VRLSH : Spark Implementation

(0.0.M even when processing 10M vectors)
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Experiments
=» The size of shuffled data (Disk usage)

Shuffled Data (GB)
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(b) Shuffling cost vs. data scale

The number of vectors | 105 106 107 108 109
Running time (s) 90 138 814 7444 81315
Memory usage (Gb) 07 1. 24 6.9 10.3
Shuffled data (Gb) 0.1 1.0 10 104 1045
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Shuffled data

— Occurs when gathering data that share the
same key onto the same machine

— Qccurs disk and network I/Os

The gap varies up to 320 times depending on k

NNDMR requires 170TB when processing 1B vectors



Experiments

=» Scalability of MRDF as data grows and the number of machines increases

Relative Running Time
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Relative Running Time : the time taken relative to
the reference point(10M vectors, 2 machines)

Almost close to the Ideal
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Experiments
=» Finding the best parameters

SIFT1M e GlovelM
1.0 "‘ . —|
®» ¢ ® &
Best v _|Best 4 ’
—-— ;'; . 0.7 ¢ ®¢
— 0.6
= 0.8 = 3 et
o e,/ [v] a
b v @ 05
& o7] W -4 wY Yy oy
.0 © 0.4
061 @ -
03] #* ® e
0.5 |‘ T T 1 l. T T T
500 1000 1500 2000 500 1000 1500 2000
Running Time (s) Running Time (s)
SUSY5M DeeplOM
2:000) % % x 0.8 1 . % x
_M * B‘est i‘ 2
0.95 *+++ + 0.74 i
= 0.90 v = +*
g 'v’“' g 067 &
Q o.851 .- < ] wy v
0.80 - "' b &
p4 0.4+ g'®
0751 ¢ ®
500 1000 1500 2000 2500 3000 1000 2500 4000 5500 7000 8500
Running Time (s) Running Time (s)
p=2 m p=5 m p=10 m p=15
m p=25 m p=50 m p=100
® a=10* v a=3x10* * a=10° @ a=3x10° ® a=10°

19

Recall increases as a increases
Larger a improves graph connection
Load balancing problem with low p (2, 5)

The number of machines used =10



Experiments

=» Terminating condition for MRDF

T : Graph convergence

P 104 T=107°

— Ratio of updated edges to total edges
71072
0.95 -

Terminate the algorithm when it is below the threshold t

Recall

0.9 1

Forms elbow point at 0.01 and reasonable accuracy
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Conclusion

vy ¢+ 4 d

Up to 7.6x faster

Up to 56% better quality

High scalability

Handle billion—scale dataset

21



Thanks.



