
Efficient Distributed Approximate
k-Nearest Neighbor Graph Construction

by Multiway Random Division Forest

Sang-Hong Kim Ha-Myung Park

Kookmin University, Seoul, Korea

Efficient Distributed Approximate
k-Nearest Neighbor Graph Construction

by Multiway Random Division Forest

Sang-Hong Kim Ha-Myung Park

Kookmin University, Seoul, Korea

Efficient Distributed Approximate
k-Nearest Neighbor Graph Construction

by Multiway Random Division Forest

Sang-Hong Kim Ha-Myung Park

Kookmin University, Seoul, Korea

Efficient Distributed Approximate
k-Nearest Neighbor Graph Construction

by Multiway Random Division Forest

Sang-Hong Kim Ha-Myung Park

Kookmin University, Seoul, Korea

1. Preliminaries

2. Proposed Method

3. Experiments

4. Conclusion

Index

k-NN Graph

➔ What is k-NN graph ?

Vector dataset

The k most similar vectors
are connected to each other

1Preliminaries

Vector ⇔ Node

2-NN Graph consisting of 5 vectors

➔ Applications - Visualization

2Preliminaries

Jian Tang, Ming Zhang, and Qiaozhu Mei, 2016. Visualizing Large-scale and High-dimensional Data. In WWW

2

➔ Applications - Clustering

Preliminaries

https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/

2

➔ Applications - Recommender systems

Preliminaries

https://opensearch.org/blog/Building-k-Nearest-Neighbor-%28k-NN%29-Similarity-Search-Engine-with-Elasticsearch/

2

➔ Large-scale real world datasets

Preliminaries

 (Deep1B, SIFT1B, SPACEV, …)

➔ Related works that build graphs in distributed environment

3Preliminaries

- NNDMR

 ● Simple distributed version of NN-Descent

 ● MapReduce implementation

 ● Massive data exchange problem

 ● Impractical when handling large-scale data

- VRLSH

 ● LSH based divide-and-conquer method

 ● Spark implementation

 ● Graph fragmentation problem

 ● Requires additional graph refinement

➔ Related works that build graphs in distributed environment

3Preliminaries

- NNDMR

 ● Simple distributed version of NN-Descent

 ● MapReduce implementation

 ● Massive data exchange problem

 ● Impractical when handling large-scale data

- VRLSH

 ● LSH based divide-and-conquer method

 ● Spark implementation

 ● Graph fragmentation problem

 ● Requires additional graph refinement

Solves both problems

1. Preliminaries

2. Proposed Method

3. Experiments

4. Conclusion

Index

Proposed Method
➔ MRDF (Multiway Random Division Forest)

4

ρ : Multiway-dividing factor

→ Each node have ρ children nodes

α : Subset size limit

→ The number of vectors in each leaf node

 is smaller than α

V<>

V<0> V<1> V<2>

V<0,0> V<0,1> V<0,2>

Leaf !
(< α)

Leaf !
(< α)

Leaf !
(< α)

Leaf !
(< α)

Leaf !
(< α)

ex) ρ = 3

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

V<>

V<0> V<1> V<2>

Leaf !
(< α)

Leaf !
(< α)

Depth 1

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

V<>

V<0> V<1> V<2>

V<0,0> V<0,1> V<0,2>

Leaf !
(< α)

Leaf !
(< α)

Leaf !
(< α)

Leaf !
(< α)

Leaf !
(< α)

Depth 1

Depth 2

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

➔ Graph construction from single tree topology

6

ρ = 3, α = 6

Each subset size < α(=6)

Proposed Method

1. Samples 3(= ρ) of the total nodes as a centroid

2. Remaining nodes are assigned to the centroid most
 similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

4. For areas larger than 6(= α), 3 centroids are sampled
 in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and
 merge the subgraphs

Fragmented graph → Might not connect to actual nearest neighbors

➔ Refine graph by merging various trees

7Proposed Method

- Reflects the graph information built from orange box

- Reflects additional graph information based on
 another tree topology
 → improves node connection

- Accuracy always increases as trees are added

- How to merge?
 → Top-K nodes ∈ (Previous K nodes ∪ New k nodes)

➔ Refine graph by merging various trees

7Proposed Method

- Reflects the graph information built from orange box

- Reflects additional graph information based on
 another tree topology
 → improves node connection

- Accuracy always increases as trees are added

- How to merge?
 → Top-K nodes ∈ (Previous K nodes ∪ New k nodes)

➔ Refine graph by merging various trees

7Proposed Method

- Reflects the graph information built from orange box

- Reflects additional graph information based on
 another tree topology
 → improves node connection

- Accuracy always increases as trees are added

- How to merge?
 → Top-K nodes ∈ (Previous K nodes ∪ New k nodes)

➔ Refine graph by merging various trees

7Proposed Method

Graph from another tree

- Reflects the graph information built from orange box

- Reflects additional graph information based on
 another tree topology
 → improves node connection

- Accuracy always increases as trees are added

How to merge?
 → Top-K nodes ∈ (Previous-K nodes ∪ New-K nodes)

➔ Improves node connection by coarse-grained partitioning

14

Larger α divides the area into larger units

 → Decrease the depth of the tree

 → Increase connection within the subgraph

Proposed Method

α = 6

Exploit approximate algorithm to handle larger subsets

 Decrease in recall << Decrease in running time

Decrease in recall << Construct multiple trees

➔ Improves node connection by coarse-grained partitioning

14

Larger α divides the area into larger units

 → Decrease the depth of the tree

 → Increase connection within the subgraph

Exploit approximate algorithm to handle larger subsets

 Decrease in recall << Decrease in running time

Decrease in recall << Construct multiple trees

Proposed Method

All areas are smaller than 12

α = 12

1. Preliminaries

2. Proposed Method

3. Experiments

4. Conclusion

Index

Experiments

Q1. Performance trade-off

➔ Does MRDF provides the best trade-off between the running time and the graph quality?

Q2. Scalability

➔ How well does MRDF scale up and out in terms of the data size and the number of machines?

Q3. Effect of parameters

➔ How do parameters α and ρ affect the running time and the output graph quality of MRDF?

21

Experiments
➔ Comparison of running time and recall with NNDMR / VRLSH

- Upper left position = high accuracy & fast speed

- Generally 95% or higher accuracy

- Up to 56% higher accuracy than Second Best

15

➔ Comparison of memory usage

16

- Lowest memory usage by MRDF

- VRLSH : Spark Implementation

 (O.O.M even when processing 10M vectors)

Experiments

➔ The size of shuffled data (Disk usage)

17

- The gap varies up to 320 times depending on k

- NNDMR requires 170TB when processing 1B vectors

→ Occurs when gathering data that share the

same key onto the same machine

→ Occurs disk and network I/Os

Shuffled data

Experiments

➔ Scalability of MRDF as data grows and the number of machines increases

18

- Relative Running Time : the time taken relative to

the reference point(10M vectors, 2 machines)

- Almost close to the Ideal

Experiments

➔ Finding the best parameters

19

- Recall increases as α increases

 Larger α improves graph connection

- Load balancing problem with low ρ (2, 5)

 The number of machines used = 10

Experiments

➔ Terminating condition for MRDF

20

- τ : Graph convergence

 → Ratio of updated edges to total edges

- Terminate the algorithm when it is below the threshold τ

- Forms elbow point at 0.01 and reasonable accuracy

Experiments

1. Preliminaries

2. Proposed Method

3. Experiments

4. Conclusion

Index

Conclusion

➔ Up to 7.6x faster

➔ Up to 56% better quality

➔ High scalability

➔ Handle billion-scale dataset

21

Thanks.

