Sang-Hong Kim

Ha-Myung Park

Sang-Hong Kim

Ha-Myung Park

Sang-Hong Kim

Ha-Myung Park

Sang-Hong Kim

Ha-Myung Park

Index

1. Preliminaries

- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

➔ What is k-NN graph ?

Vector dataset

k-NN Graph

 v_5

2–NN Graph consisting of 5 vectors

➔ Applications – Visualization

Jian Tang, Ming Zhang, and Qiaozhu Mei, 2016. Visualizing Large-scale and High-dimensional Data. In WWW

➔ Applications – Clustering

https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/

➔ Applications – Recommender systems

✦ Large-scale real world datasets

✦ Related works that build graphs in distributed environment

- NNDMR
 - Simple distributed version of NN-Descent
 - MapReduce implementation
 - Massive data exchange problem
 - Impractical when handling large-scale data

- VRLSH
 - LSH based divide-and-conquer method
 - Spark implementation
 - Graph fragmentation problem
 - Requires additional graph refinement

➡ Related works that build graphs in distributed environment

- NNDMR
 - Simple distributed version of NN-Descent
 - MapReduce implementation
 - Massive data exchange problem
 - Impractical when handling large-scale data

- VRLSH
 - LSH based divide-and-conquer method
 - Spark implementation

Graph fragmentation problem

• Requires additional graph refinement

Solves both problems

Index

1. Preliminaries

2. Proposed Method

- 3. Experiments
- 4. Conclusion

MRDF (Multiway Random Division Forest)

- $\boldsymbol{\rho}$: Multiway-dividing factor
 - \rightarrow Each node have ρ children nodes
- **a** : Subset size limit
 - → The number of vectors in each leaf node is smaller than a

➔ Graph construction from single tree topology

$\rho = 3, \alpha = 6$

Each subset size $< \alpha$ (=6)

1. Samples $3(= \rho)$ of the total nodes as a centroid

- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids
- 3. The entire dataset is divided into 3 areas
- 4. For areas larger than 6(= α), 3 centroids are sampled in that area recursively
- 5. Repeat this process until all areas are smaller than 6
- 6. Construct graphs independently on each area, and merge the subgraphs

➔ Graph construction from single tree topology

$\rho = 3, \alpha = 6$

Each subset size < $\mathbf{\alpha}(=6)$

- 1. Samples 3(**= ρ**) of the total nodes as a centroid
- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids
- 3. The entire dataset is divided into 3 areas
- 4. For areas larger than 6(= α), 3 centroids are sampled in that area recursively
- 5. Repeat this process until all areas are smaller than 6
- 6. Construct graphs independently on each area, and merge the subgraphs

➔ Graph construction from single tree topology

$\rho = 3, \alpha = 6$

Each subset size $< \alpha$ (=6)

- 1. Samples 3(= ρ) of the total nodes as a centroid
- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids

3. The entire dataset is divided into 3 areas

- 4. For areas larger than 6(= α), 3 centroids are sampled in that area recursively
- 5. Repeat this process until all areas are smaller than 6
- 6. Construct graphs independently on each area, and merge the subgraphs

➡ Graph construction from single tree topology

Each subset size < $\mathbf{a}(=6)$

➔ Graph construction from single tree topology

$\rho = 3, \alpha = 6$

Each subset size $< \alpha$ (=6)

- 1. Samples 3(**= ρ**) of the total nodes as a centroid
- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids
- 3. The entire dataset is divided into 3 areas

4. For areas larger than $6(=\alpha)$, 3 centroids are sampled in that area recursively

- 5. Repeat this process until all areas are smaller than 6
- 6. Construct graphs independently on each area, and merge the subgraphs

Graph construction from single tree topology

$\rho = 3, \alpha = 6$

Each subset size $< \alpha$ (=6)

- 1. Samples $3(= \rho)$ of the total nodes as a centroid
- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids
- 3. The entire dataset is divided into 3 areas
- 4. For areas larger than 6(= α), 3 centroids are sampled in that area recursively

5. Repeat this process until all areas are smaller than 6

6. Construct graphs independently on each area, and merge the subgraphs

➔ Graph construction from single tree topology

Each subset size < α (=6)

Graph construction from single tree topology

ρ = 3, α = 6

- 1. Samples 3(**= ρ**) of the total nodes as a centroid
- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids
- 3. The entire dataset is divided into 3 areas
- 4. For areas larger than 6(= α), 3 centroids are sampled in that area recursively
- 5. Repeat this process until all areas are smaller than 6
- 6. Construct graphs independently on each area, and merge the subgraphs

Graph construction from single tree topology

$\rho = 3, \alpha = 6$

- 1. Samples 3(**= ρ**) of the total nodes as a centroid
- 2. Remaining nodes are assigned to the centroid most similar to itself among each of the 3 centroids
- 3. The entire dataset is divided into 3 areas
- 4. For areas larger than 6(= α), 3 centroids are sampled in that area recursively
- 5. Repeat this process until all areas are smaller than 6
- 6. Construct graphs independently on each area, and merge the subgraphs

Each subset size $< \alpha$ (=6) Fragmented graph \rightarrow Might not connect to actual nearest neighbors

✦ Refine graph by merging various trees

- Reflects the graph information built from orange box

- Reflects additional graph information based on another tree topology
 improves pade connection
 - \rightarrow improves node connection
- Accuracy always increases as trees are added
- How to merge?
 - → Top–K nodes \in (Previous K nodes U New k nodes)

✦ Refine graph by merging various trees

- Reflects the graph information built from orange box
- Reflects additional graph information based on another tree topology
 → improves node connection
- Accuracy always increases as trees are added
- How to merge?
 - \rightarrow Top-K nodes \in (Previous K nodes U New k nodes)

✦ Refine graph by merging various trees

- Reflects the graph information built from orange box
- Reflects additional graph information based on another tree topology
 improves node connection
 - \rightarrow improves node connection

- Accuracy always increases as trees are added

- How to merge?
 - → Top-K nodes \in (Previous K nodes U New k nodes)

✦ Refine graph by merging various trees

- Reflects the graph information built from orange box
- Reflects additional graph information based on another tree topology
 - \rightarrow improves node connection
- Accuracy always increases as trees are added

How to merge?

→ Top-K nodes ∈ (Previous-K nodes U New-K nodes)

Improves node connection by coarse-grained partitioning

α = 6

Larger \mathbf{a} divides the area into larger units

- \rightarrow Decrease the depth of the tree
- \rightarrow Increase connection within the subgraph

Exploit approximate algorithm to handle larger subsets Decrease in recall **<<** Decrease in running time Decrease in recall **<<** Construct multiple trees

Improves node connection by coarse-grained partitioning

α = 12

Larger \mathbf{a} divides the area into larger units

- \rightarrow Decrease the depth of the tree
- \rightarrow Increase connection within the subgraph

Exploit approximate algorithm to handle larger subsets Decrease in recall **<<** Decrease in running time Decrease in recall **<<** Construct multiple trees

Index

- 1. Preliminaries
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

Q1. Performance trade-off

→ Does MRDF provides the best trade-off between the running time and the graph quality?

Q2. Scalability

How well does MRDF scale up and out in terms of the data size and the number of machines?

Q3. Effect of parameters

 \Rightarrow How do parameters **a** and **p** affect the running time and the output graph quality of MRDF?

✦ Comparison of running time and recall with NNDMR / VRLSH

- Upper left position = high accuracy & fast speed
- Generally 95% or higher accuracy
- Up to 56% higher accuracy than Second Best

✦ Comparison of memory usage

- Lowest memory usage by MRDF
- VRLSH : Spark Implementation
 - (**O.O.M** even when processing 10M vectors)

The size of shuffled data (Disk usage)

Shuffled data

- → Occurs when gathering data that share the same key onto the same machine
- → Occurs disk and network I/Os

The number of vectors	10 ⁵	10 ⁶	107	10 ⁸	10 ⁹
Running time (s)	90	138	814	7444	81315
Memory usage (Gb)	0.7	1.1	2.1	6.9	10.3
Shuffled data (Gb)	0.1	1.0	10	104	1045

- The gap varies up to 320 times depending on m k
- NNDMR requires 170TB when processing 1B vectors

Scalability of MRDF as data grows and the number of machines increases

- Relative Running Time : the time taken relative to the reference point(10M vectors, 2 machines)
- Almost close to the Ideal

➡ Finding the best parameters

- Recall increases as **α** increases
 - Larger $\pmb{\alpha}$ improves graph connection
- Load balancing problem with low ρ (2, 5)

The number of machines used = 10

Terminating condition for MRDF

- τ: Graph convergence
 - \rightarrow Ratio of updated edges to total edges
- Terminate the algorithm when it is below the threshold au
- Forms elbow point at 0.01 and reasonable accuracy

Index

- 1. Preliminaries
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

Conclusion

- ➔ Up to 7.6x faster
- ➔ Up to 56% better quality
- ➔ High scalability
- ✦ Handle billion-scale dataset

Thanks.