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But how?
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Graph-based, PQ based, …

Efficiently find nearest neighbor within specific time window  

Time-restricted K-Nearest Neighbor Search (TKNN Search)

➔ Multi-level Block Indexing (MBI)
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: Simple Approaches for TKNN Search

Binary Search and Brute-Force (BSBF)

<- Past           Time axis          Future ->

𝒕𝒔 𝒕𝒆

1. Find first item in time window using Binary search

2. Check all items within the time window

Narrow time window Wide time window

Performance depends size of time window

20
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Graph-based KNN Search

: Simple Approaches for TKNN Search (SF)Preliminaries

a. Start at random data point of NN Graph

b. Iteratively,

1) Move towards the neighbor that 

becomes closest to the query point

2) Update KNN result.

c. Until no longer possible to update the 

results. 
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result set 𝑆

K = 3

-> FarClose <-

▪ Select the closest data point to the query point from 
the candidates for visit and move towards it.

▪ Stopped because it moved much farther away than 
current results.

Graph-based KNN Search

: Simple Approaches for TKNN Search (SF)Preliminaries
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: Simple Approaches for TKNN Search (SF)Preliminaries

Graph-based KNN Search Search and Filtering: TKNN Search

Within time window
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result set 𝑆

K = 3

-> FarClose <-

Search and Filtering (SF)

▪ Update result set by current point.

▪ Update result set by current point,
when current point is in time window.

: Simple Approaches for TKNN Search (SF)Preliminaries
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result set 𝑆

K = 3

-> FarClose <-

Graph-based KNN Search + Filtering

▪ Graph-based

➔ Suitable for high-dimensional data

➔ Search Speed

2.2 Search and Filtering (SF)
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Narrow time window Wide time window

2.2 Search and Filtering (SF)
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Narrow time window Wide time window

Visit at least 19 Nodes Visit at least 5 Nodes

K = 32.2 Search and Filtering (SF)



Preliminaries
2. Simple approaches for TKNN Search

44

Narrow time window

Visit at least 19 Nodes Visit at least 3 Nodes

Narrow time window (ideal)

K = 32.2 Search and Filtering (SF)
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Search and Filtering (SF)Binary Search and Brute-Force (BSBF)

Narrow time window

Wide time window

Narrow time window

Wide time window
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Search and Filtering
(SF)

Binary Search and Brute-Force 
(BSBF)

Narrow

Wide

Multi-level Block Indexing
(MBI)time window



Index

1. Intro

2. Preliminaries

3. Proposed Method

4. Experiments

5. Conclusion

47

3.1. Overview of MBI

3.2. Insertion and Indexing process of MBI

3.3. Query process of MBI



Proposed Method
1. Overview of MBI

48

Key idea

Binary tree of SF blocks
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Build binary tree

Divide blocks based on time

1. Overview of MBI
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Higher level -> Wide time range

1. Overview of MBI

Build binary tree

Divide blocks based on time
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Select blocks corresponding
to the query time window

1. Overview of MBI

Query time window

Processing query
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1. Overview of MBI

Query time window

Search on each blocks,
and merge results.

Merge results into K items

Processing query
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2. Insertion and Indexing process of MBI

Insertion of data

Insert to new node

(Do not build KNN Graph yet)
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2. Insertion and Indexing process of MBI

Insertion of data

Create virtual nodes

to maintain perfect binary tree structure
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2. Insertion and Indexing process of MBI

Adding v10~v15
Build KNN graph of block

Build KNN graph

when leaf block become full
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2. Insertion and Indexing process of MBI

Build KNN graph

when own time range become full

Build KNN graph of block
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2. Insertion and Indexing process of MBI

Can be easily parallelized

Build KNN graph of block
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3.3. Query process of MBI
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How should blocks be selected?

3. Query process of MBI

Fine
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3. Query process of MBI

Parameter τ

Select blocks to query
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Else, move to child nodes

40%
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Select blocks to query
49%

60%

90%100%

20%

100%

100% 80%

The ratio of the block included in the query time window

Start at root,

Else, move to child nodes

40%

5%

10% If the ratio > τ, select and stop
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3. Query process of MBI

Effect of Parameter τ 

High τ, fit well

But have to query on many blocks

SF

Low τ, fit bad (like weakness of SF)

But can query on lesser blocks
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3. Query process of MBI

Effect of Parameter τ 

High τ, fit well

But have to query on many blocks

SF

Low τ, fit bad (like weakness of SF)

But can query on lesser blocks

If τ<=0.5,

only up to two blocks will be selected.
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Summary of MBI
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Experiments
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Challenges

Q1. Search Performance

Does MBI provide the best search?

Q2. Scalability

How well does MBI scale up in terms of the data size?

Q3. Data Insertion time

How efficiently can new data be inserted into?
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Include Time Label

Synthetic Time Label
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Queries per second when recall@k is set to 0.995

Q
u

e
ri

e
s 

p
e

r 
S

e
co

n
d



Preliminaries
2. Simple approaches for TKNN Search

74
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Multi-level Block Indexing
(MBI)time window
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Uniform performance regardless of the time window
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3. Scalability

Fits within the theoretical complexity

Parallelization works well
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3. Scalability

Performances fit within the theoretical complexity
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Fits within the analysis (τ <= 0.5)
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Multi-level Block Indexing

▪ Uniform and superior TKNN search performance.

▪ Efficiently handles data insertion.

▪ Highly scalable

Efficient Proximity Search in Time-accumulating High-dimensional Data
using Multi-level Block Indexing
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https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-6-K-%EC%B5%9C%EA%B7%BC%EC%A0%91%EC%9D%B4%EC%9B%83KNN

https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/KDtree.html

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html
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