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Efficiently find nearest neighbor within specific time window
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Indexing temporal and spatial information

Can process temporal or spatial queries
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Not suitable for high-dimensional data
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Graph-based KNN Search

a. Start at random data point of NN Graph
b. Iteratively,
1) Move towards the neighbor that
becomes closest to the query point
2) Update KNN result.
c. Until no longer possible to update the

results.
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Graph-based KNN Search

= Select the closest data point to the query point from
the candidates for visit and move towards it.
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Search and Filtering (SF)
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2.2 Search and Filtering (SF)
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1. Overview of MBI
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1. Overview of MBI
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1. Overview of MBI
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1. Overview of MBI
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Query time window

Processing query

Search on each blocks,
and merge results.

. Merge results into K items
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2. Insertion and Indexing process of MBI
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2. Insertion and Indexing process of MBI
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2. Insertion and Indexing process of MBI
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2. Insertion and Indexing process of MBI
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2. Insertion and Indexing process of MBI
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3.3. Query process of MBI



Proposed Method

3. Query process of MBI
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3. Query process of MBI
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3. Query process of MBI
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3. Query process of MBI
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3. Query process of MBI
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Else, move to child nodes
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3. Query process of MBI
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3. Query process of MBI
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Effect of Parameter t

High T, fit well
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But can query on lesser blocks
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Proposed Method

3. Query process of MBI
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Effect of Parameter t

High T, fit well

But have to query on many blocks

Low T, fit bad (like weakness of SF)

But can query on lesser blocks

If t<=0.5,

only up to two blocks will be selected.
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EXpe riments Challenges

Q1. Search Performance

Does MBI provide the best search?

Q2. Scalability

How well does MBI scale up in terms of the data size?

Q3. Data Insertion time

How efficiently can new data be inserted into?



Experiments

1. Datasets

Include Time Label [

Synthetic Time Label

Datasets ,# ftems Dim.  Distance Source
Train Test
MovieLens 57,571 200 32  Angular GroulfnLens(J
COMS 291,180 200 128 Angular  KMA’
GloVe-100 1,183,514 10,000 100  Angular Pennington et al.?[33]
SIFT1IM 1,000,000 10,000 128  Euclidean , 9
GISTIM 1000000 1000 960 FEuclidean J¢80Uetal”[21]
DEEP1B 9,990,000 10,000 96  Angular Babenko et al.!?[5]
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Experiments

2. Performance

Queries per second when recall@k is set to 0.995
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Experiments

2. Performance

Queries per second when recall@k is set to 0.995
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Uniform performance regardless of the time window
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2. Performance

Queries Per Second
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070 0.75 0.80 0.85 090 095 1.00 0.80 0.85 0.90 0.95 1.00 0.6 0.7 0.8 0.9 1.0
Recall
@) | D[t : t]1/1D| = 10% (b) |D[ts : £]]/|D| = 30% ©) D[t : t.]1/|D] = 80%

Uniform performance regardless of the time window
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Experiments

3. Scalability

"J.."‘ 104

E € 103!
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B 102 e

2 1021 =

Data Size Data Size

Fits within the theoretical complexity

Parallelization works well
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Experiments

3. Scalability
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Performances fit within the theoretical complexity
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Experiments

4. Effect of Parameter T

MovielLens
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The Ratio of the Vectors Within the Query Time Window to the Entire Database (|D[t;s: t]1] / |D])
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Fits within the analysis (t <= 0.5)
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Index

5. Conclusion



Conclusion

|\)»—$\>

Dty : t15]
:' B '; 85
RN iﬁ
l & I
: Dty : t7] I Dlts: ty5]
et M St

D[l’lz : I15]

Multi-level Block Indexing

= Uniform and superior TKNN search performance.

= Efficiently handles data insertion.

= Highly scalable
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Conclusion

B
’Q\ Multi-level Block Indexin
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LA i& = Uniform and superior TKNN search performance.
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! ot ! __ Dln:nsl = Efficiently handles data insertion.
== _él :' 3, ': B,
| - | - 1
p\ - | \/\ | K;- Highly scalable
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Efficient Proximity Search in Time-accumulating High-dimensional Data
using Multi-level Block Indexing



Thank you



https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%IF%ACKHEB%8B%ID-6-K-%EC%B5%ICHEA%B7%BC%ECHA0%91%ECK%RID%BA%ECYHIBX%E3KNN

https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/KDtree.html

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html

84



	발표부분
	슬라이드 1: Efficient Proximity Search in  Time-accumulating High-dimensional Data  using Multi-level Block Indexing
	슬라이드 2: Intro
	슬라이드 3: Intro
	슬라이드 4: Intro
	슬라이드 5: Intro
	슬라이드 6: Intro
	슬라이드 7: Intro
	슬라이드 8: Index
	슬라이드 9: Index
	슬라이드 10: Preliminaries
	슬라이드 11: Preliminaries
	슬라이드 12: Preliminaries
	슬라이드 13: Preliminaries
	슬라이드 14: Preliminaries
	슬라이드 15: Preliminaries
	슬라이드 16: Preliminaries
	슬라이드 17: Preliminaries
	슬라이드 18: Index
	슬라이드 19: Preliminaries
	슬라이드 20: Preliminaries
	슬라이드 21: Preliminaries
	슬라이드 22: Preliminaries
	슬라이드 23: Preliminaries
	슬라이드 24: Preliminaries
	슬라이드 25: Preliminaries
	슬라이드 26: Preliminaries
	슬라이드 27: Preliminaries
	슬라이드 28: Preliminaries
	슬라이드 29: Preliminaries
	슬라이드 30: Preliminaries
	슬라이드 31: Preliminaries
	슬라이드 32: Preliminaries
	슬라이드 33: Preliminaries
	슬라이드 34: Preliminaries
	슬라이드 35: Preliminaries
	슬라이드 36: Preliminaries
	슬라이드 37: Preliminaries
	슬라이드 38: Preliminaries
	슬라이드 39: Preliminaries
	슬라이드 40: Preliminaries
	슬라이드 41: Preliminaries
	슬라이드 42: Preliminaries
	슬라이드 43: Preliminaries
	슬라이드 44: Preliminaries
	슬라이드 45: Preliminaries
	슬라이드 46: Preliminaries
	슬라이드 47: Index
	슬라이드 48: Proposed Method
	슬라이드 49: Proposed Method
	슬라이드 50: Proposed Method
	슬라이드 51: Proposed Method
	슬라이드 52: Proposed Method
	슬라이드 53: Index
	슬라이드 54: Proposed Method
	슬라이드 55: Proposed Method
	슬라이드 56: Proposed Method
	슬라이드 57: Proposed Method
	슬라이드 58: Proposed Method
	슬라이드 59: Index
	슬라이드 60: Proposed Method
	슬라이드 61: Proposed Method
	슬라이드 62: Proposed Method
	슬라이드 63: Proposed Method
	슬라이드 64: Proposed Method
	슬라이드 65: Proposed Method
	슬라이드 66: Proposed Method
	슬라이드 67: Proposed Method
	슬라이드 68: Proposed Method
	슬라이드 69: Proposed Method
	슬라이드 70: Index
	슬라이드 71: Experiments
	슬라이드 72: Experiments
	슬라이드 73: Experiments
	슬라이드 74: Preliminaries
	슬라이드 75: Experiments
	슬라이드 76: Experiments
	슬라이드 77: Experiments
	슬라이드 78: Experiments
	슬라이드 79: Experiments
	슬라이드 80: Index
	슬라이드 81: Conclusion
	슬라이드 82: Conclusion
	슬라이드 83: Thank you
	슬라이드 84


