
Enhancing Heterophilic Graph Neural Network
Performance through Label Propagation in

K-Nearest Neighbor Graphs

Hyun Seok Park
Kookmin University

20151741@kookmin.ac.kr

Ha-Myung Park
Kookmin University

hmpark@kookmin.ac.kr

Abstract—How can we exploit Label Propagation (LP) to
improve the performance of GNN models on heterophilic graphs?
Graph Neural Network (GNN) models have received a lot of
attention as a powerful deep learning technology that uses graph
structure and features, and has achieved an archived state-of-the-
art performance for graph-related tasks. LP has been applied
in various studies to improve performance of GNN models.
However, LP does not perform well on heterophilic graphs, where
nodes of different types are linked with each other, since LP
assumes that the graphs inherently exhibits homophily, where
similar nodes tend to be linked. Such heterophilic graphs are
increasingly common nowadays.

In this paper, we propose LPkG (Label Propagation on k-
Nearest Neighbor Graphs of Graph Autoencoder), a simple but
effective method to engage LP to improve the performance of
GNN models even on heterophilic graphs. LPkG constructs a
supplementary homophilic graph, peforms LP on this graph,
and uses the results together with the results of GNN models.
The supplementary graph is a k-Nearest Neighbor (k-NN) graph
genereated from a latent space computed by Graph Autoencoder
(GAE). Experimental results demonstrate that LPkG consistently
achieves performance improvement on various heterophilic graph
datasets: 2.75% on the Wisconsin dataset, 2.23% on the Texas
dataset, and 2.55% on the Cornell dataset.

Index Terms—Label Propagation, Graph Neural Network, Het-
erophilic graph, k-NN graph, Graph Autoencoder

I. INTRODUCTION

How can we leverage Label Propagation (LP) to improve

the performance of Graph Neural Network (GNN) models on

heterophilic graphs? The myriad of information surrounding

us is often represented as heterophilic graphs; a graph is

considered heterophilic if different kinds of nodes are typically

connected to each other by edges. Fig. 1b is an example of

a heterophilic graph. For example, in an online transaction

network, fraudsters may have more connections to regular

customers than other fraudsters [1]; in a dating network,

individuals may prefer connections with individuals of the

opposite gender [2]; in a protein-protein interaction network,

different types of amino acids are connected [3].

To analyze such heterophilic graphs, several GNN models

have been proposed over the past few years. While the

This work was funded by the Korea Meteorological Administration Re-
search and Development Program ”Developing Intelligent Assistant Tech-
nology and Its Application for Weather Forecasting Process” under Grant
(KMA2021-00123). Ha-Myung Park is the corresponding author.

heterophily of graphs poses challenges for traditional GNN

models as they learns by aggregating features of each node’s

direct neighbors, GNN models for heterophilic graphs address

these challenges by either aggregating features from neighbors

that are more than 2 hops away [4], [5], or from potential

neighbors identified based on node feature similarity [6]–[10].

Although these models have exhibited superior performance

over traditional GNN models in the context of heterophilic

graphs, it is important to consider their relatively short history,

which suggests substantial unexplored potential.

Meanwhile, several studies have found that LP complements

GNN models especially when observable data are scarce [11],

[12]; LP propagates labels directly along the edges while

GNN models infer labels from node features. Nevertheless,

the application of LP to heterophilic graphs has rarely been

investigated, primarily due to LP’s inherent assumption of

homophily, which refers to the tendency of nodes to connect

with nodes having the same class label.

In this paper, we propose LPkG (Label Propagation on k-

Nearest Neighbor Graphs of Graph Autoencoder), a simple

but effective method that improves the performance of GNN

models by making supplementary homophilic graph, then

using the label distribution obtained by LP. To reduce the

dependence on features and create more meaningful sup-

plementary homophilic graph, we use a Graph Autoencoder

(GAE) [13] to generate latent representations that include

both graph structure and features. We then construct a k-

NN graph from the latent representations and use the graph

as the supplementary homophilic graph. We demonstrate the

effectiveness of our proposed method through various datasets

and experiments. Significantly, we observe notable enhance-

ments of 0.68%, 2.75%, 2.23% and 2.55% on the Chameleon,

Wisconsin, Texas, and Cornell datasets, respectively, when

LPkG is applied to FSGNN, which is one of the state-of-

the-art models.

The main contributions of this paper are summarized as

follows:

• We propose LPkG, a method to engage Label Propagation

into learning GNN models to improve the performance.

LPkG constructs a supplementary homophilic graph by

constructing k-NN graph from the latent space computed

337

2024 IEEE International Conference on Big Data and Smart Computing (BigComp)

2375-9356/24/$31.00 ©2024 IEEE
DOI 10.1109/BigComp60711.2024.00060

(a) Homophilic Graph (b) Heterophilic Graph

Fig. 1: A illustration of homophilic and heterophilic graph.

The color represents the class of the node.

by Graph Autoencoder, and performs LP on the supple-

mentary graph.

• We have configured GAE’s loss function to feature re-

construction error to ensure that the features produced

by GAE exhibit homophily.

• To demonstrate the effectiveness of LPkG in improving

the performance on heterophilic graphs, we apply it to

various datasets and a GNN model and evaluate its perfor-

mance in node classification tasks. Our method achieved

up to 2.75% performance improvement compared to one

of the state-of-the-art GNN model on heterophilic graphs.

II. RELATED WORK

A. Label Propagation

Numerous methods incorporating LP into GNN models have

been proposed for tasks on graphs. LP assumes that the graph

is homophilic and estimates the labels of unlabeled nodes

using the label distribution of the neighbors [14]–[17]. Wang

and Leskovec [18] explore the relationship between LP and

Graph Convolutional Network (GCN) where LP is employed

to learn edge weights and improve performance when applied

to GCN. Dong et al. [11] use LP to generate pseudo-labels for

unlabeled nodes by propagating given labels, and incorporate

them into GCN for joint learning. Bellei et al. [12] improve

GCN performance by incorporating neighboring node labels

in the first layer.

Meanwhile, Zhong et al. [19] focus on improving the effec-

tiveness of LP in heterophilic graphs. They employ a multi-

layer perceptron (MLP) trained on raw features to estimate

the probabilities of inter-class connections. By leveraging these

probabilities during the LP process, they achieve improvement

in the performance of LP for heterophilic graphs. However,

this approach has several challenges; it heavily relies on the

features, making its performance sensitive to variations in

feature distribution. Moreover, it does not exploit any advanced

GNN models that have demonstrated superior performance

across various graph-related tasks. On the other hand, LPkG

uses GAE as a module, taking into account both the graph

structure and node features. Since GAE can be replaced with

newer GNN models that may be developed in the future, there

is potential for LPkG to evolve alongside advancements in

GNN models.

B. GNN models for heterophilic graphs

Various methods for improving the performance of GNN

models in heterophilic graphs have been studied. We classify

these methods into two categories: one for finding potential

neighbors and the other for aggregating from higher order

neighbors. Several GNN models consider the heterophily of

graphs by finding potential neighbors and using their features

during aggregation. To identify the potential neighbors, Geom-

GCN [6] maps a graph to a Euclidean latent space; NL-

GNN [9] and GPNN [10] use attention mechanisms; and

UGCN [7] and SimP-GCN [8] use the k-NN algorithm. Mean-

while, other GNN models incorporate higher order neighbors

during aggregation. MixHop [4] incorporates messages from

multiple hops of neighbors, and mixes using distinct linear

transformations. H2GCN [5] uses the representation obtained

from neighboring nodes at lower order to make predictions

about nodes at higher order. TDGNN [20] employs tree

decomposition to transform neighbors from different hops

into subgraphs, and aggregates in a parallel during learning.

However, these models do not take into account the label

distribution of both direct and potential neighbors, which can

be significantly helpful in inferring node labels. In contrast,

we emphasize that our LPkG exploits LP to incorporate the

label distribution of potential neighbors into the inference.

III. PRELIMINARIES

A. Graph

The input graph G = (V,E) is an undirected graph where

V represents the set of nodes v1, v2, · · · , vn, and E represents

the set of edges e1, e2, · · · , em. The n×n adjacency matrix A
is used to represent connections between nodes, with entries

being 1 if a connection exists and 0 if not. The n×F feature

matrix X captures node features, where F corresponds to the

feature dimension. The n × c label matrix Y signifies class

labels, with c denoting the number of distinct classes.

B. Homophily and Heterophily

The homophily ratio H(G) of a graph G is a metric that

measures how much the neighbors of nodes in a graph share

the same label [21], and defined as follows:

H(G) =
1

|V|
∑
v∈V

|{u ∈ N(v) : y(v) = y(u)}|
|N(v)|

where N(v) is the neighbor set of node v, y(v) is the label of

node v, and |S| represents the cardinality of any set S. The

range of H(G) is [0, 1]. A graph G is regarded as homophilic

if H(G) is close to 1; conversely, it is regarded as heterophilic

if it is close to 0.

C. Label Propagation

Label Propagation (LP) [14] is one of the most commonly

used techniques in graph-based analysis. LP iteratively prop-

agates labels of some nodes to unlabeled nodes according to

their relationships in order to predict labels for the entire set

of nodes. Let Y (0) be the initial label matrix of size n×c that

is generated from the node labels, where c is the number of

338

labels. That is, Y
(0)
ij = 1 if node vi’s label is j, otherwise 0.

Then, for t ≥ 0, where t represents the number of iterations,

LP recursively calculates Y (t+1) as follows:

Y (t+1) = (I − S)(αÃỸ (t) + (1− α)ÃY (0)) + SY (0)

where α is a weight parameter for balancing between updated

labels and initial labels, Ã is the symmetrically normalized

adjacency matrix with self-connections, Ỹ (t) is the row-

normalized version of Y (t), S is the diagonal indicator matrix

where Sii =
∑

j Y
(0)
ij , and I is the identity matrix.

D. Graph Autoencoder

Graph Autoencoder (GAE) [13] is an unsupervised neural

network model that uses graph convolutional layers [22] to

encode both the graph structure and features into a latent space

efficiently. The graph convolution layer used in GAE is defined

as:

Gconv(X, Ã) = ÃXW

where Ã represents the symmetrically normalized adjacency

matrix with self-connections and W is a weight matrix. GAE

consists of an encoder enc and a decoder dec. The encoder

enc computes the latent representation X ′ as:

X ′ = enc(X, Ã) = Gconv(σ(Gconv(X, Ã)))

where σ is an activation function. The decoder dec generates

the reconstructed adjacency matrix Ā from X ′ as:

Ā = dec(X ′) = σ(X ′X ′�)

where σ is an sigmoid function. The weight parameters of

GAE are trained to minimize the difference between Ã and Ā
so that the latent representation involves the graph structural

information.

IV. PROPOSED METHOD

In this paper, we propose LPkG (Label Propagation on k-

Nearest Neighbor Graphs of Graph Autoencoder), a simple but

effective method to engage LP to improve the performance of

GNN models even on heterophilic graphs. The challenge faced

by LPkG lies in the fact that while LP assumes homophily, the

graphs we are interested in exhibit heterophily; thus, simply

applying LP to these graphs does not aid in performance

improvement. LPkG addresses this problem by constructing

a supplementary homophilic graph and then applying LP on

this graph. We have discovered that when generating latent

vectors with GAE, nodes of the same type tend to exist closer

to each other in the latent space (see Fig. 6). Following this

discovery, LPkG generate the supplementary graph as a k-NN

graph on the latent space computed by GAE.

In section IV-A, we demonstrate how LPkG uses a GAE

and leverages the latent representations obtained from the

trained GAE to create a k-NN graph. Then in section IV-B, we

demonstrate how to use LP on the supplementary homophilic

graph created from section IV-A and apply the resulting label

distribution to train GNN models.

A. Build k-NN graph using GAE

In this section, we introduce how LPkG constructs a

supplementary homophilic graph. The main idea is to use

GAE to convert features into a latent representation and

construct a k-NN graph based on cosine similarity. To more

effectively construct a supplementary homophilic graph, LPkG

sets the reconstruction target of the decoder as features and

proceeds with training. Fig. 2 simplifies the representation of

the process, illustrating how LPkG uses GAE to generate a

supplementary homophilic graph. The decoder dec used in

LPkG is as follows:

dec(X ′) = f(σ(f(X ′)))

where f denotes a fully connected layer and σ is denoted an

activation function. Therefore, the GAE used in LPkG takes

the adjacency matrix A and the feature matrix X , passing

them through an encoder enc to obtain latent representations

X ′, and then it reconstructs these representations into features

using a decoder dec. Additionally, during the training process,

an MSE loss function is employed, and the GAE is trained to

minimize this loss. The loss function l is as follows:

X̂ = dec(enc(X, Ã))

l(X, X̂) =
1

n

n∑
i=1

(Xi − σ(X̂i))
2

where σ is an sigmoid function, Xi and X̂i are the values

at the i-th row in X and X̂ , respectively. After training is

completed, the encoder enc obtains the latent representation

X ′ from the original adjacency matrix A and feature matrix

X .

We build a k-NN graph using the cosine similarities between

the latent representations of nodes. Let sim(i, j) be the cosine

similarity between nodes i and j, defined as follows:

sim(i, j) =
X ′

i ·X ′
j

‖X ′
i‖ · ‖X ′

j‖
where ‖X ′

i‖ and ‖X ′
j‖ denotes the L2 norms of X ′

i and X ′
j ,

respectively. Then, the adjacency matrix Â of the k-NN graph

is generated according to the following condition:

Âij =

{
1, if j ∈ topk(i)

0, otherwise

where topk(i) is the set of k nodes having the highest cosine

similarities.

B. LP & GNN models training

The generated supplementary homophilic graph provides

new connections and a distribution of labels among neigh-

bors that were not present in the original connectivity. Af-

ter applying LP using the training label, we combine the

results of LP with the learning results of the GNN models

by performing a weighted average. Fig. 3 demonstrates the

process of performing LP on the generated supplementary

homophilic graph and subsequently incorporating it into the

339

X

A

Gconv layers FC layers

Encoder Decoder

X̂ X

Loss
X ′

X̂

Â

Construct a k-NN graph

Fig. 2: This illustration shows how LPkG uses GAE to create a supplementary homophilic graph.

Â

A

X

GNN Zpred

Label Propagation

Zprob

Z̄new⊕

Fig. 3: This illustration shows the process in which LPkG

performs label propagation on the generated supplementary

homophilic graph, using the results for the training of a GNN

model.

training process of a GNN models. The final label distribution,

Y (t+1) obtained after t + 1 iterations of LP is defined by

Section III-C. Furthermore, to use the results of this process in

the training procedure of a GNN models, a new predicted value

Z̄new is defined by taking a weighted average, as follows:

Z̄new = (1− β)Zpred + βZprob

where Zpred represents the predictions of existing GNN mod-

els, β is the ratio and learning parameter of the weighted

average, and Zprob is the label distribution Y (t+1) obtained

through LP. Algorithm 1 lists a pseudocode of LPkG. Normal-

ized adjacency matrix Ã and feature matrix learn GAE (line 1).

Subsequently, the reconstructed feature X ′ is obtained through

the trained GAE enc (line 2). Next, create a k-NN graph Â
with X ′, and perform LP on Â (line 3-9). Finally, the label

distribution obtained through LP is obtained (line 10).

Algorithm 1 LPkG

Input: Normalized adjacency matrix Ã, encoder layers enc,
decoder layers dec, initial label matrix Y (0), weight param-

eter α, diagonal indicator matrix S where Sii =
∑

j Y
(0)
ij ,

identity matrix I , iteration number t1, label distribution

Zprob.

1: Train enc and dec to minimize l(X, dec(enc(Ã,X)))
▷Graph Autoencoder

2: X ′ ← enc(Ã,X)
3: Build k-NN graph Â using X ′

4: Y ← ÂY (0)

5: Ỹ ← row-normalized version of Y
6: for iteration ← 1, 2, . . . , T − 1 do
7: Y = (I − S)(αÂỸ + (1− α)ÂY (0)) + SY (0) ▷Label

Propagation

8: Ỹ ← row-normalized version of Y
9: end for

10: Zprob ← Ỹ

Dataset Nodes Edges Features Classes Homo ratio

Chameleon 2,277 36,101 2,325 5 23%
Squirrel 5,201 198,535 2,089 5 22%
Wisconsin 251 499 1,703 5 21%
Texas 183 309 1,703 5 11%
Cornell 183 295 1,703 5 30%
Actor 7,600 26,659 932 5 22%

TABLE I: A summary of the node classification datasets.

V. EXPERIMENTS

In this section, we demonstrate through experiments how

effectively LPkG makes supplementary homophilic graphs to

enhance the performance of LP. Additionally, we experimen-

tally show that LPkG is effective in improving the performance

of GNN models when training heterophilic graphs. We aim to

340

Fig. 4: The impact of changing the GAE decoder’s reconstruct

target on the homophily ratio.

Fig. 5: The impact of changing the GAE decoder’s reconstruct

target on the LP node classification accuracy.

address the following questions through our experiments:

Q1. Effect of GAE decoder on reconstruct target. (Sec-
tion V-B) What is the impact of using features instead of

the adjacency matrix as the target of the GAE decoder

Q2. Effect of GAE. (Section V-C) What is the effectiveness

of using GAE when converting a heterophilic graph to a

supplementary homophilic graph?

Q3. Node classification accuracy. (Section V-D) What could

be the impact of performing LP on the generated supple-

mentary homophilic graph and using the resulting label

distribution in a GNN models?

Q4. Effect of hyperparameters. (Section V-E) How do

hyperparameters affect the performance of LP and GNN

models?

Dataset On raw graph On k-NN graph (Proposed) Change (%)

Chameleon 23.11 65.69 184.3
Squirrel 22.27 50.64 127.4
Wisconsin 20.60 56.28 173.2
Texas 11.19 53.09 374.4
Cornell 30.36 48.66 60.3
Actor 21.95 33.42 52.3

TABLE II: The result of homophily ratio on the raw graph

and the k-NN graph with the latent representation of the GAE

(k = 5). Red highlights indicate an increase.

Dataset On raw graph Using AE Using GAE (Proposed)

Chameleon 44.08 31.58 66.23
Squirrel 33.05 27.19 49.66
Wisconsin 27.45 60.78 56.86
Texas 29.73 67.57 59.46
Cornell 51.35 48.65 54.05
Actor 22.50 35.20 27.57

TABLE III: The node classification accuracy of LP on the raw

graph, the k-NN graph with the latent representations from the

AE and GAE (k = 5). Bold highlights represents the highest

performance.

A. Experiment Setting

We introduce our experimental setup, which consists of

datasets, and baseline model.

1) Datasets: The nodes in the Texas, Cornell, and Wis-

consin datasets [6] represent web pages, the edges represent

hyperlinks, and the node features represent web pages as

bag-of-words. The nodes in the Chameleon and Squirrel

datasets [23] represent Wikipedia articles, the edges represent

connections between articles, and the node features represent

the presence of certain nouns in articles. The nodes in the

Actor dataset [24] represent actors, the edges represent co-

occurrences on a Wikipedia page, and the node features

represent some keywords on the page. These datasets are

classified as heterophilic graphs, and they are split into 60%

for training, 20% for validation, and 20% for testing for the

fully-supervised node classification task, as described in [6].

The datasets description is given in TABLE I. Additionally,

in TABLE I, the Homo ratio is derived through the formula

explained in Section III-B.

2) Baseline: We apply the framework LPkG to existing

GNN models and evaluate their performance. To verify

the performance improvement through LPkG, we use FS-

GNN [25], which aggregates features from multiple hops to

learn heterophilic graphs. FSGNN is chosen due to its re-

spectable node classification performance on most heterophilic

graphs and its achievement of state-of-the-art results on several

datasets. We use the settings and hyperparameters proposed

in paper [25]. In addition, we report the performence as

mean node classification accuracy over 10 random splits. All

experiments are conducted using AMD Ryzen 7 3800XT 8-

Core and RTX 3070 workstations with 8GB memory.

341

(a) Raw feature (b) Latent representation through AE (c) Latent representation through GAE

(d) Raw feature (e) Latent representation through AE (f) Latent representation through GAE

Fig. 6: Visualization using t-SNE of the raw feature (left), the latent representation generated through MLP-based autoencoder

(middle), and the latent representation generated through GAE (right) of the Chameleon (top) and Squirrel (bottom) datasets.

Chameleon Wisconsin Texas Squirrel Cornell Actor

GEOM-GCN 60.90 64.12 67.57 38.14 60.81 31.63

GCNII 62.48 81.57 77.84 N/A 76.49 N/A

H2GCN-1 57.11 86.67 84.86 36.42 82.16 35.86

FSGNN 78.15 85.88 85.13 74.34 84.60 35.13

FSGNN + LPkG (Proposed) 78.68 88.24 87.03 74.23 86.76 35.97

TABLE IV: The table shows the accuracy of the fully-supervised node classification task across various datasets. Bold highlights

represents the highest performance.

Hyperparameters Serach ranges

β learning rate {0.0001, 0.0005, 0.001, 0.005}
k {5, 10, 15, 20, 25, 30}
GAE dimension {128/64, 256/128, 512/256}

TABLE V: The table shows the search ranges for finding the

optimal hyperparameters of LPkG.

B. Effect of GAE decoder on reconstruct target

We investigate the effect of using features as the reconstruct

target in GAE decoder instead of the adjacency matrix. Fig. 4

shows the homophily ratio when the reconstruct target is the

adjacency matrix and when it is the feature. Additionally,

Fig. 5 demonstrates the node classification accuracy after

constructing a k-NN graph using the trained GAE latent

representations and performing LP. The results of both ex-

periments indicate that, for the majority of datasets, using

features as the reconstruct target is more effective in generating

supplementary homophilic graphs than using the adjacency

matrix.

C. Effect of GAE on generating supplementary homophilic
graph

In this section, we approach the effects of using GAE to

makes supplementary homophilic graph. TABLE II shows the

homophily ratio of the raw graph and the homophily ratio of k-

NN graphs created by considering both the graph and features

using GAE. The hyperparameters used for the experiments

were k = 5 and GAE dimensions of 256/128. The results

show an increase in homophily ratio in all graphs compared

342

Fig. 7: The effect of k on LP performance when creating a

k-NN graph.

Fig. 8: The effect of dimension of GAE on LP performance.

to the raw graph. Particularly noteworthy is the significant

increase of 184.3% and 374.4% in the Chameleon and Texas

datasets, respectively. This indicates that creating a k-NN

graph successfully identifies potential neighbors that were not

present in the raw graph.

Furthermore, TABLE III compares the node classification

accuracy of LP in various graphs, raw graph, the k-NN

graph with the latent representations from the Autoencoder

(AE) composed of MLP and GAE. Importantly, significant

performance improvements are observed, especially in datasets

with complex connectivity patterns like Chameleon and Squir-

rel datasets. These results provide evidence that using GAE

to create k-NN graph is effective in transforming complex

heterophilic graphs into more homophilic graphs.

In addition, Fig. 6 shows the results of t-SNE [26] visual-

ization for raw features, latent representations obtained from

a trained AE composed of MLP, and latent representations

Fig. 9: The effect of learning rate of β on FSGNN accuracy.

obtained using a trained GAE on both the Chameleon and

Squirrel datasets. The visualization demonstrates that leverag-

ing graph structure with GAE is more effective in capturing

complex feature distributions compared to AE or raw features.

Moreover, this demonstrates that LPkG can effectively con-

struct a supplementary homophilic graph, enabling us to obtain

label distributions that were previously inaccessible.

D. Node Classfication Experiment

In this section, we conduct experiments on various datasets

to verify that LPkG improves the performance of GNN models

on heterophilic graphs. TABLE IV shows the accuracy of

different models on heterophilic graphs and the accuracy when

LPkG is applied to FSGNN. It shows an overall improvement

when applied to the base FSGNN. Particularly, we observe

improvements of 2.75%, 2.23%, and 2.55% on the Wiscon-

sin, Texas, and Cornell datasets, respectively, and a 0.68%

improvement on the Chameleon dataset. This result implies

that through LPkG, it is possible to effectively enhance the

performance of a GNN models on heterophilic graphs.

E. Hyperparameters

The hyperparameter settings of LPkG are shown in TA-

BLE V. To investigate the effect of LP iterations, we conducted

experiments from 0 to 500 iterations. We found that all datasets

converged sufficiently from 30 iterations, so our experiments

were conducted at 30 iterations. Furthermore, the investigation

into the impact of the learning rate for GAE on GNN model

accuracy ranged from 0.0001 to 0.005, revealing that it does

not exert significant influence and converges. Consequently,

for all experiments, the learning rate for GAE is set at 0.0001.

In addition, we investigated the effect of α in LP from 0.1 to

0.99. We found that the performance of LP node classification

did not differ significantly, and that most of the datasets

showed better performance with higher α values. Therefore,

we fixed α to 0.99 and conducted the experiments.

343

1) The effect of k on LP accuracy.: Fig. 7 shows the

influence of the hyperparameter k of the k-NN graph on the

performance of LP. The experiment is conducted with GAE

dimensions of 256/128. The results show that the accuracy

decreases when the value of k is too high for most datasets.

This shows that a suitable value of k must be guaranteed.

2) The effect of GAE dimension on LP accuracy.: Fig. 8

demonstrates the influence of GAE dimensions on the accu-

racy of LP. The experiment is conducted with k of 5. The

results show that performance is not guaranteed with too small

dimensions. A certain size must be guaranteed to generate a

latent representation that preserves the graph and features.

3) The effect of β learning rate on GNN model.: Fig. 9

illustrates the performance variation of FSGNN with respect

to the learning rate of β. The experiment is conducted with

GAE dimensions of 256/128 and k of 5. In most datasets, it

can be observed that as the learning rate of β increases, the

accuracy of FSGNN decreases, indicating the necessity for

proper learning rate settings.

VI. CONCLUSION

We introduce a method, LPkG, that exploits Label Propaga-

tion (LP) to improve the performance of Graph Neural Net-

work (GNN) models. LPkG uses Graph Autoencoder (GAE)

to generate latent representations that incorporate both the

graph structure and features. Moreover, in this process, to

create a more meaningful supplementary homophilic graph,

the reconstruction target of the decoder is set as features

during training, leading to the construction of a k-NN graph.

LPkG also use the label distribution obtained by performing

Label Propagation on the generated supplementary homophilic

graph for training GNN models. In our experiments, we

demonstrate that specifying the reconstruction target of the

GAE as features proves to be more effective in constructing the

supplementary homophilic graph. Furthermore, using GAE to

capture both feature and graph structure proves more effective

than using features alone. Moreover, we compare GNN model

node classification performance on various heterophilic graph

datasets, and we observe significant improvements of 2.75%,

2.23%, and 2.55% on the Wisconsin, Texas, and Cornell

datasets, respectively.

REFERENCES

[1] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos, “Netprobe: a fast
and scalable system for fraud detection in online auction networks,” in
Proceedings of the 16th international conference on World Wide Web,
2007, pp. 201–210.

[2] J. Zhu, R. A. Rossi, A. Rao, T. Mai, N. Lipka, N. K. Ahmed, and
D. Koutra, “Graph neural networks with heterophily,” 2021.

[3] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” 2020.

[4] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. V. Steeg, and A. Galstyan, “Mixhop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,”
2019.

[5] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Generalizing graph neural networks beyond homophily,” CoRR, vol.
abs/2006.11468, 2020. [Online]. Available: https://arxiv.org/abs/2006.
11468

[6] H. Pei, B. Wei, K. C. Chang, Y. Lei, and B. Yang, “Geom-gcn:
Geometric graph convolutional networks,” CoRR, vol. abs/2002.05287,
2020. [Online]. Available: https://arxiv.org/abs/2002.05287

[7] D. Jin, Z. Yu, C. Huo, R. Wang, X. Wang, D. He, and J. Han, “Uni-
versal graph convolutional networks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 10 654–10 664, 2021.

[8] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks,” 2021.

[9] M. Liu, Z. Wang, and S. Ji, “Non-local graph neural networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 12, pp. 10 270–10 276, dec 2022. [Online]. Available:
https://doi.org/10.1109%2Ftpami.2021.3134200

[10] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-object
interactions by graph parsing neural networks,” 2018.

[11] H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui, “On
the equivalence of decoupled graph convolution network and label
propagation,” in Proceedings of the Web Conference 2021, 2021, pp.
3651–3662.

[12] C. Bellei, H. Alattas, and N. Kaaniche, “Label-gcn: An effective method
for adding label propagation to graph convolutional networks,” arXiv
preprint arXiv:2104.02153, 2021.

[13] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” 2016.
[14] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data

with label propagation,” 2002.
[15] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning

using gaussian fields and harmonic functions,” in Proceedings of the
20th International conference on Machine learning (ICML-03), 2003,
pp. 912–919.

[16] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” Advances in neural information
processing systems, vol. 16, 2003.

[17] X. Zhu, Semi-supervised learning with graphs. Carnegie Mellon
University, 2005.

[18] H. Wang and J. Leskovec, “Unifying graph convolutional neural
networks and label propagation,” CoRR, vol. abs/2002.06755, 2020.
[Online]. Available: https://arxiv.org/abs/2002.06755

[19] Z. Zhong, S. Ivanov, and J. Pang, “Simplifying node classification on
heterophilous graphs with compatible label propagation,” arXiv preprint
arXiv:2205.09389, 2022.

[20] Y. Wang and T. Derr, “Tree decomposed graph neural network,” 2021.
[21] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph

neural networks for graphs with heterophily: A survey,” arXiv preprint
arXiv:2202.07082, 2022.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[23] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node
embedding,” 2021.

[24] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis
in large-scale networks,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2009, pp. 807–816.

[25] S. K. Maurya, X. Liu, and T. Murata, “Improving graph neural networks
with simple architecture design,” 2021.

[26] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

344

