
BTS: Load-Balanced Distributed Union-Find for
Finding Connected Components with Balanced Tree

Structures

Chaeeun Kim†

University of California, Santa Cruz
CA, USA

ckim151@ucsc.edu

Changhun Han
Kookmin University

Seoul, Republic of Korea

codingnoye@kookmin.ac.kr

Ha-Myung Park*

Kookmin University
Seoul, Republic of Korea

hmpark@kookmin.ac.kr

Abstract—How can we efficiently find connected components
with Union-Find in a distributed system? Union-Find is the most
efficient sequential algorithm for finding connected components
with low memory usage and high speed. Several studies have
adapted Union-Find to distributed memory systems to process
large graphs quickly; however, they all suffer from load balancing
problems. We notice that the leading cause of the load balancing
problems is the nature of Union-Find, which gathers more and
more edges to a small number of vertices as it proceeds. In
this paper, we propose BTS, a new fast and scalable distributed
Union-Find algorithm for finding connected components in large
graphs. BTS resolves the load balancing problems by proposing
Balanced Union-Find, which allocates vertices to each processor
and makes edges link to vertices in the same processor as much
as possible. We further optimize BTS with edge refinement
to minimize network traffic and memory usage. Experimental
results show that BTS efficiently resolves the load balancing
problems, processing 16-1024 times larger graphs with 3.1-261.9
times faster speeds than existing algorithms.

Index Terms—Connected component, Graph algorithm, Graph
mining, Distributed algorithm, MPI

I. INTRODUCTION

Given a large graph, how can we efficiently find connected

components with Union-Find in a distributed system? A

connected component in a graph is a maximal subset of

vertices that are connected by paths. Finding all connected

components is a crucial graph mining task and has been used

in numerous applications such as graph compression [1], [2],

pattern recognition [3], [4], reachability indexing [5], [6], and

graph partitioning [7], [8]. Union-Find is the most efficient

sequential algorithm for finding connected components with

low memory usage and high speed. Union-Find gradually

updates a forest from a stream of edges so that each connected

component like in Fig. 1a is identified as a star graph like in

Fig. 1d in the end.

For decades, many studies have proposed various algorithms

for finding connected components with different approaches

in different computational environments: graph traversal [9]–

[14], label propagation & shortcutting [15]–[26], matrix-

vector multiplication [27], [28], and Union-Find [29]–[36]

†Chaeeun Kim was at Kookmin University during this work.
*Ha-Myung Park is the corresponding author.

(a) An input graph

(b) An intermediate state by BTS

(c) An intermediate state by
existing distributed Union-Find methods

(d) The star graph
(the final output)

· · · · · ·

· · · · · ·

Vertices belonging to processors 0, 1, 2, and 3, respectively
BTS (our method) Existing distributed Union-Find methods
Edges to send over network

Fig. 1: Given an input graph as shown in (a), finding connected

components is essentially the same as computing star graphs

like in (d). Existing distributed Union-Find methods iteratively

update the graph in a processor-agnostic way, resulting in

imbalanced loads and extensive network communication, as

shown in (c). Notably, edges that span vertices in differ-

ent processors (highlighted in pink), necessitating network

communication, largely emerge in intermediate states. BTS

addresses these issues by computing balanced trees first as

in (b), and transforming them into star graphs as in (d)

without network communication. Vertices are color-coded by

processors.

in parallel, external memory, MapReduce, and distributed

memory systems. Among them, Union-Find-based algorithms

perform superior to other approaches on sequential or parallel

systems in terms of running time and memory usage [30],

[35]. For distributed systems, however, approaches that can

be implemented as a series of sequential accesses, such as

label propagation and matrix-vector multiplication, have been

mainly studied rather than Union-Find, which requires many

random accesses [11], [12], [18]–[22], [27], [28], [32]. Nev-

ertheless, there have been a few studies to apply Union-Find

to distributed systems [29]–[32]. They perform Union-Find

independently in each processor and then integrate the results

1090

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00089

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
00

89

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

to compute the global connectivity in processor-agnostic ways.

However, we observe that this processor-agnostic Union-Find

approach leads to substantial network communication and

significant load balancing issues. Fig. 1c illustrates these issues

with an example of the intermediate state of a processor-

agnostic distributed Union-Find algorithm. It links vertices

by edges regardless of the processors to which they belong,

resulting in significant network traffic; edges that need to be

sent over the network are highlighted in pink. Moreover, as the

operation progresses, edges become increasingly concentrated

on a few vertices, such as the central blue vertex. This con-

centration leads to increased network communication, compu-

tational cost, and memory consumption on these few specific

vertices, exacerbating the overall load balancing challenges.

In this paper, we propose BTS, a new fast and scalable dis-

tributed Union-Find algorithm for finding connected compo-

nents in large graphs. BTS resolves the aforementioned prob-

lems by employing a balanced tree structure that constrains

edges to remain within each processor as much as possible

during the process. This approach aims to minimize network

communication and balance the workloads. BTS computes

balanced trees like in Fig. 1b first and then converts them

to star graphs while each subtree is handled by a processor

independently without network communication. Our research

includes further optimizing BTS to minimize network traffic

and memory usage by refining edges. We summarize the

contributions of this paper as follows:

•Algorithm. We propose BTS, a fast and scalable distributed

Union-Find algorithm that balances the workload with bal-

anced tree structures and minimizes network traffic and

memory consumption with edge refinement.

•Theory. We theoretically show that BTS resolves the load

balancing problems by limiting the number of children a

vertex can have to O(ρ2+|V |/ρ), reduces the network traffic

down to O(C × (ρ− 1)), and bounds the memory usage of

each processor to O((|V | + |E|)/ρ) where |V |, |E|, and C
are the numbers of vertices, edges and connected components

in the graph, and ρ is the number of processors.

•Experiment. Experimentally evaluated on large real-world

and synthetic graphs, BTS efficiently resolves the load bal-

ancing problems, processing 16-1024 times larger graphs

with 3.1-261.9 times faster speed than existing algorithms.

The source codes and datasets used in this paper are available

at https://github.com/cekim10/BTS.

II. RELATED WORK

In this section, we introduce existing algorithms for finding

connected components in large graphs. We first present the

concept of Union-Find algorithms. Then, we concentrate on

existing distributed Union-Find algorithms since the proposed

algorithm BTS is one of that kind. After that, we concisely

outline other approaches to finding connected components in

large graphs. Methods introduced in this section are summa-

rized in Table I.

TABLE I: Table of connected components algorithms

Union-Find Graph Traversal
Label Propagation
& Shortcutting

Matrix-
Vector
Multiplica-
tion

Parallel,
in-memory

Cybenko et
al. [29], Anderson
& Woll [33],
Simsiri et al. [34],
ConnectIt [35]

Bader & Cong [9],
Pearce et al. [10]

Shiloach &
Vishkin [15],
Liu el al [23], [24],
PPA-assembler [25]

LACC [40],
FastSV [27],
[41]

Parallel,
External

Agarwal et al. [36] Pearce et al. [10]
FlashGraph [16],
Mosaic [17]

-

Distributed,
in-memory

UFM [29],
DUF [30],
D-Rem [31],
ALBUF [32],
BTS (our)

GD-CC [13], [14],
Jain et al. [11]

Yan et al. [26],
D-Galois [18]

LACC [40],
FastSV [27],
[41]

Distributed,
external

- Asokan [12]
Hash-to-Min [22],
Kiveris et al. [19],
PACC [20], [21]

Pegasus [28]

A. Union-Find Algorithms

Union-Find is a well-known algorithm for finding connected

components in a graph. A typical data structure used for

Union-Find is a forest array, an array of parent pointers rep-

resenting each connected component as a rooted tree. Union-

Find initially sets each vertex’s pointer to the vertex itself;

that is, each vertex constitutes a connected component alone.

Union-Find uses two operations, union and find. Given an

edge spanning two connected components, the union operation
merges them by setting the pointer of the root of one tree to

a vertex in the other tree. Given a vertex, the find operation

returns the root of the tree containing the vertex; when two

vertices u and v are in the same connected component,

find(u) and find(v) return the same root. Union-Find usually

uses union-by-rank or union-by-size technique for the union

operation and path compression, path splitting, or path halving

technique for the find operation [37]. The combination of

them is proved to take O(|E| · α(|E|, |V |)) time where |V |
and |E| are the numbers of vertices and edges in the graph,

respectively, and α is the very slowly growing inverse Acker-

mann’s function [38]. Rem [39] improves the union operation

to enable early termination by alternately updating the parent

pointers of two end vertices of each edge. The time complexity

of Rem is O(|E| · log(2+|E|/|V |)|V |) [38] and it performs

the best in practice as experimentally evaluated in [37]. To

handle larger graphs, Union-Find has also been adapted for

several computing environments such as parallel [29], [33]–

[35], external-memory [36], and distributed-memory [29]–[32]

systems.

B. Distributed Union-Find Algorithms

Over the years, several Union-Find algorithms running on

distributed memory systems have been proposed to efficiently

find connected components in large graphs. The first practical

distributed Union-Find algorithm is known to be Union-Find
Merging (UFM) proposed in [29]. UFM first makes each pro-

cessor build a forest array from edges residing in the processor.

Then, it merges the forest arrays two by two over log ρ steps

to resolve the global connectivity, where ρ is the number of

processors. However, UFM does not scale well because it does

1091

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

not fully exploit all processors and uses a lot of memory; the

number of active processors is halved every step, so only two

processors are used in the last step, and a forest array occupies

O(|V |) memory space for each processor. Distributed Union-
Find (DUF) [30] addresses the issues by partitioning the graph.
DUF partitions the vertex set into ρ blocks of size O(|V |/ρ).
Each processor builds a forest array from the subgraph induced

by a block and updates it repeatedly until convergence; in each

step, each processor updates the parent pointer of each vertex

to point to the grandparent. If the parent belongs to a different

processor, network communication occurs. Distributed Rem
(D-Rem) [31] speeds it up with a different update strategy; it

updates the parent pointer of each vertex to point directly to

its root. Each update occurs network communication multiple

times if the path to the root spans several processors. D-Rem

reduces the number of network communication occurrences by

using Rem’s zigzag union operation that terminates the search

early if possible. However, DUF and D-Rem suffer from load

balancing problems since the parent pointers get concentrated

on very few vertices as the algorithms proceed. Asynchronous
and Load Balanced Union-Find (ALBUF) [32] alleviates the

load balancing problems by redistributing vertices of the initial

graph so that processors have similar numbers of vertices, but

does not completely resolve the problems. Still, the parent

pointers get concentrated on very few vertices during the

computation, resulting in up to 4.8 times the difference in

running time between processors (see Fig. 5 in [32]). Our

experimental result in Fig. 5b shows that the initial rebalancing

alone does not address the load balancing problems perfectly.

We emphasize that, in this paper, we dramatically reduce the

running time by fundamentally resolving the load balancing

problem that DUF, D-Rem, and ALBUF suffers from (see

Sections IV-C and V-B).

C. Other Approaches

Besides Union-Find, several works propose other ap-

proaches to finding connected components in large graphs.

We categorize the approaches into graph traversal, label prop-

agation & shortcutting, and matrix-vector multiplication.

•Graph Traversal: Several studies adapt breadth-first search
(BFS) or depth-first search (DFS) to parallel [9], [10], ex-

ternal [10], distributed-memory (including Pregel) [11], [13],

[14], and MapReduce [12] systems. Graph traversal methods

are optimal in time (O(|V |+ |E|)) in sequential systems but

not that efficient in parallel and distributed systems. They

duplicate the entire graph for each processor or raise massive

I/Os due to the nature of graph traversal requiring a large

amount of random access.

•Label Propagation & Shortcutting: Label propagation

propagates vertex labels through edges iteratively. Shortcut-

ting reduces the number of iterations by sending a label to

two-hop neighbors at once. Since label propagation at each

vertex can work independently, label propagation algorithms

in parallel and distributed systems [15]–[26] perform better

than graph traversal algorithms. Still, to access all neighbors

TABLE II: Table of symbols

Symbol Definition

G = (V,E) Undirected graph with vertex set V and edge set E
u, v, w Vertices
(u, v) Edge between u and v such that u > v
p(u) Parent pointer of u

p(u,G′) Parent pointer of u in a graph G′
Λ(u,G) Connected component containing vertex u in G
m(S) Most preceding vertex in vertex set S
ξ Random hash function: V → {0, · · · , ρ− 1}

ξ(u) Processor to which vertex u belongs
[S]i Vertex set S in processor i: {v ∈ S|ξ(v) = i}
ρ Number of processors
C Number of connected components

for each vertex every iteration, label propagation requires

storing the entire graph into memory or raising massive I/Os.

•Matrix-Vector Multiplication: Label propagation can be

represented by iterative multiplication between an adjacency

matrix and a label vector. LACC [40] and FastSV [27], [41]

use a distributed linear-algebra tool to perform label propa-

gation. Pegasus [28] implements a generalized matrix-vector

multiplication on MapReduce and uses it to find connected

components. On parallel and distributed systems, matrix-

vector multiplication has essentially the same problems as

label propagation.

Due to the load balancing problems of existing distributed

Union-Find algorithms, as described in Section II-B, various

approaches introduced above for finding connected compo-

nents in large graphs have been mainly studied. Note that we

efficiently resolve the load balancing problem by keeping each

edge inside a processor as much as possible. Consequently, our

method outperforms other algorithms in different approaches

and environments (see Sections V-E and V-F).

III. PROBLEM DEFINITION

In this section, we define the problem of finding connected

components. The symbols used in this paper are listed in

Table II. Let G = (V,E) be an undirected graph where V
and E are the sets of vertices and edges, respectively. We

assume that any two vertices are comparable and are not

identical; u < v means vertex u precedes vertex v. An edge

connecting two vertices u and v is represented as (u, v) if

u > v, and as (v, u) if u < v. In other words, an edge (u, v)
is an ordered pair such that u > v; we call u the source

and v the sink. We say vertices u and v are connected if a

path exists between u and v in G. A connected component of

a graph is a maximal subset of vertices where every vertex

is connected. For example, the input graph in Fig. 2 has

two connected components of 12 and 6 vertices. Each vertex

belongs to exactly one connected component. We denote the

connected component containing vertex u by Λ(u,G). Our
method represents each connected component as a tree where

parents precede their children. We denote by p(u) the parent

pointer of u in a tree structure; i.e., an edge (u, v) in a tree

means p(u) = v. Additionally, we denote by p(u,G′) the

parent pointer of u in an arbitrary graph G′. We let the root

vertex of a tree be the self-pointing vertex at the topmost; i.e.,

1092

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

04

8 12

16

15

9
13

17

2
6

10
14

7
3

11

15

12

16

2
10

14 12
6

10

7

11 15

8 12

59
17

4

2 04
1

5
13

17
3
11

Proc.0 Proc.1

Proc.2 Proc.3

0
12

16

2
10

14

0

12
6

10

7

11 15

8 12

59
17

4

2 04
1

5
13

17
3
11

16

10

7
8

12 2

0
517

4

12
2 10

14

0

6

115

4

59
17

204

1

13
3

0 6
7

15

1 3
11

16

10
8

12 2

0
517

4

12
2 10

14

0

6

115

4

59
17

204

1

13
3

0 6
7

15

1 3
11

16

8

12 2

0

5
4

2 10

14

0

6

59
17

0
1

13

0
7

15

1 3
11

1

6

3

7 7

16

8

12 2

0

5
4

2 10

14

0

6

59
17

0
1 7

15

1 3
11

1

6

3

7

16

8

12

0
4

2 10

14

0

6

59
17

0
1

0
7

15

1 3
11

1

Proc.0 Proc.1

Proc.2 Proc.3

Proc.0 Proc.1

Proc.2 Proc.3

Proc.0 Proc.1

Proc.2 Proc.3

Proc.0 Proc.1

Proc.2 Proc.3

Proc.0 Proc.1

Proc.2 Proc.3

Proc.0 Proc.1

Proc.2 Proc.3

(2) Balanced Union-Find on Chunked Edges (3) Edge Redistribution

(5) Network Communication(6) Balanced Union-Find w/o Initialization

Repeating (5) and (6) until no data changes (4) Balanced Union-Find

(7) Path Compression

Input Graph

0

(1) Initial Edge Distribution

1313

Edges received over networkEdges to send over network and discardEdges to send over network
Edges to discardEdgesVertices belonging to processors 0, 1, 2, and 3, respectively

Fig. 2: An example of overall process of BTS.

p(u) = u. For a vertex set S, we denote the most preceding

vertex in S by m(S).

The problem of this paper is to find all connected compo-

nents in G, which is equivalent to transforming the graph like

in Fig. 1a into a forest of one level trees, also known as star

graphs, like in Fig. 1d. We formally define the problem as

follows:

Definition 1. The problem of finding all connected compo-
nents in graph G is to associate each vertex u in V to the most
preceding vertex m(Λ(u,G)) in the connected component
containing u.

IV. PROPOSED METHOD

We propose BTS, a novel distributed Union-Find algorithm

that runs on distributed-memory systems. The main challenges

to make BTS fast and scalable are as follows:

(1) How can we balance the workload among processors?
Union-Find inherently concentrates pointers on a small

number of vertices during the process, causing load balanc-

ing problems on distributed-memory systems as in the dis-

tributed Union-Find algorithms introduced in Section II-B.

(2) How can we minimize network traffic? How much

network traffic an algorithm occurs determines its overall

performance on distributed-memory systems. Meanwhile,

updating parent pointers repeatedly across different pro-

cessors, distributed Union-Find algorithms cause massive

network traffic.

(3) How can we bound the memory usage of processors?
In a distributed Union-Find algorithm, a processor requires

memory space for vertices and edges that the processor

deals with. It implies that a processor may have to occupy

memory space for all the vertices and edges in the graph,

such as when parent pointers are concentrated on the

processor. To make an algorithm scalable, we need to bound

the memory usage of processors.

We address the above challenges with our all-in-one so-

lution, edge rebalancing, which balances the workload by

keeping each edge inside a processor (see Section IV-C). It

also reduces network traffic and memory usage as the number

of edges spanning between processors decreases. We further

optimize BTS by excluding unchanged edges from network
communication to minimize network traffic and discarding
the parent pointers of outer vertices to bound the memory

usage (see Section IV-D).

A. BTS: Overview

Fig. 2 shows the overall process of BTS. Given an input

graph, vertices are colorized and assigned to one of the

processors by a random hash function ξ : V → {0, · · · , ρ−1}.
We denote by ξ(u) the processor to which vertex u belongs.

In this example, vertices in the input graph colored in green,

yellow, red, and blue belong to processors 0, 1, 2, and 3,

respectively. BTS finds connected components by following

steps: (1) BTS initially distributes the edges of the input

graph evenly across the processors. (Section IV-B) (2) Each

1093

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: BTS
Input: Undirected graph G = (V,E) in external

storage

Output: {(u,m(Λ(u,G)))|u ∈ V }
1 Initialization() � Steps 1-3 (Algorithm 2)

2 BalancedUnionFind() � Step 4 (Algorithm 3)

3 repeat
4 NetworkCommunication() � Step 5 (Algorithm 4)

5 BalancedUnionFind() � Step 6 (Algorithm 3)

6 until no edge updates
7 PathCompression() � Step 7 (Algorithm 5)

processor performs Balanced Union-Find (BUF) on the sub-

graph induced by the set of allocated edges. As a result, the

subgraph turns into a forest of balanced trees with reduced

edges and the same connectivity. We describe BUF in detail

in Section IV-C. (3) Then, BTS redistributes edges over the

network; each edge (u, v) is sent to ξ(u) and ξ(v). (4) Each
processor performs BUF again to build an initial forest and (5)

sends every updated edge (u, v) to ξ(u) and ξ(v) through the

network. (6) Each processor receives some edges and conducts

BUF on each received edge. BTS repeats (5) and (6) until

no edge is updated. (7) BTS computes the final result by

independently performing path compression for all vertices on

each processor; no network communication occurs.

Algorithm 1 is the overview pseudocode of BTS. Given

an undirected graph G = (V,E), BTS progresses through

a sequence of aforementioned steps to derive a set of pairs

{(u,m(Λ(u,G)))|u ∈ V } where m(Λ(u,G)) denotes the root
vertex u in the graph. The pseudocodes for each step are

detailed in the following sections.

B. Initial Edge Distribution & Redistribution

This section describes steps (1)-(3) in Fig. 2 in detail.

Like the existing distributed Union-Find algorithms such as

DUF, D-Rem, and ALBUF, BTS is a vertex partition-based

algorithm. BTS partitions the vertex set into blocks, assigns

each block to a processor, and has each processor repeatedly

update the parent pointers of given vertices. Meanwhile, the

input graph is initially stored as an edge list file in external

storage such as Network Attached Storage (NAS) or Dis-

tributed File System (DFS). To quickly load data in parallel,

BTS partitions the input edges into ρ blocks evenly and has

each processor load a block, where a block is a subset of

edges existing consecutively in storage, and ρ is the number

of processors. For example, in step (1) of Fig. 2, 24 input edges

are partitioned into ρ = 4 blocks as the input of processors,

respectively. Step (2) transforms the subgraph induced by each

block into a smaller subgraph with the same connectivity to

reduce network communication; we explain this more in the

next paragraph. Then, step (3) has each processor redistribute

each edge (u, v) to processors ξ(u) and ξ(v) to let them update

their parent pointers with the edge. For example in Fig. 2, step

(3) sends edge (4, 2) in processor 2 to ξ(4) = 0 and ξ(2) = 1.

12

16

2
10

14

0

12
6

10

7

11 15

8
12

59
17 4

2 04
1

5
13

17
3
11

16

10

7
8

12
2

0

517

4

16

10

14

0

6

115

4

59
17

204

1

13
3

0 6
7

15

1
3

11

Proc.0 Proc.1

Proc.2 Proc.3

Proc.0 Proc.1

Proc.2 Proc.3

(2) Union-Find (3) Edge Redistribution

15

128

9
17

2

11

Fig. 3: An example of edge redistribution with plain Union-

Find. Unlike when using BUF, edges are concentrated on

vertex 2, causing a load balancing problem. Vertices and edges

are color-coded in the same way as in Fig. 2.

Algorithm 2: Initialization (Steps (1)-(3))

1 Function Initialization()
� Step (1). Initial Edge Distribution

2 Let EC be the set of edge chunks, each of size

O(M)
� Step (2). Balanced Union-Find on Chunked

Edges

3 for each EC
i in EC do in parallel

4 Initialize G′ = (V ′, E′) as an empty graph

5 Union-Find(EC
i , G′) � In Algorithm 3

6 Rebalancing(G′) � In Algorithm 3

� Step (3). Edge Redistribution

7 for each vertex u ∈ V ′ do
8 v ← p(u,G′)
9 Send (u, v) to processors ξ(u) and ξ(v)

10 Discard G′ from the main memory

Before redistributing edges, BTS reduces the number of

edges to send by transforming the input edges into other

edges with the same connectivity as D-Rem [31] does; D-

Rem has each processor perform Union-Find on the input

edges, transforming the edges into a forest. In contrast, BTS

uses Balanced Union-Find (BUF), described in Section IV-C,

instead of Union-Find for the sake of load balancing. Fig. 3

shows the result of edge redistribution when plain Union-Find

is used instead of BUF for step (2) in Fig. 2. Union-Find links

many edges to vertex 2 in each processor, and accordingly,

after edge redistribution, edges flock to processor 1 in charge

of vertex 2, causing a load balancing problem. In contrast,

BUF prevents edges from being concentrated at a single vertex

(see steps (2) and (3) in Fig. 2). We give a detailed description

of BUF in Section IV-C.

If the graph is enormous, so a vast number of edges are

passed to a processor, an out-of-memory error can occur. To

avoid out-of-memory errors, BTS has each processor divide

the input edge block into chunks of size O(M) and perform

1094

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

8 12

59
17

4

2

Proc.2

8 12

59
17

4

2

Proc.2

8

12

59
17 4

2

Proc.2

Step 1. Union-Find Step 2. Rebalancing

(a) (b) (c)

Fig. 4: An example of Balanced Union-Find. Vertices and

edges are color-coded in the same way as in Fig. 2.

BUF on each chunk sequentially, where M is the memory size

of a processor. As soon as BUF computes a forest from each

chunk, each processor immediately sends the edges to other

processors through the network and then discards the edges to

secure memory space.

Algorithm 2 is the pseudocode of Initialization, which

is corresponding to steps (1) to (3). The function

Initialization divides the input edge set E into the

chunk set EC , where each chunk has O(M) edges. Initializing
G′ = (V ′, E′) as an empty graph, the function performs

Balanced Union-Find for each chunk EC
i in EC . Balanced

Union-Find consists of Union-Find and Rebalancing, detailed

in Algorithm 3. As a result of the Balanced Union-Find, each

vertex u becomes connected to either the local root or the root

vertex. Subsequently, the function sends the edge (u, v) for

each vertex u and the updated parent pointer v = (u, p(u,G′))
to processors ξ(u) and ξ(v). Once the edge distribution is

complete, G′ is discarded from the main memory to secure

memory space.

C. Balanced Union-Find

This section describes Balanced Union-Find (BUF) which

is used in steps (2), (4), and (6) in Fig. 2. Existing vertex

partitioning-based Union-Find algorithms suffer from load

balancing problems due to the nature of Union-Find that

gathers edges to a small number of vertices as it proceeds.

BUF resolves the load balancing problems by conducting

a rebalancing operation after Union-Find; the rebalancing

operation modifies parent pointers not to focus on the same

vertex. We describe the two steps that BUF does on each

processor below.

1) Initialization: The input of a processor is edges trans-

ferred over the network from other processors. BUF initializes

the parent pointer of each vertex in the subgraph induced by

the input edges to point to the vertex itself. We use a hash

table to store the parent pointers and assume that if a vertex

is not in the hash table, the parent pointer of the vertex points

to the vertex itself.

2) Step 1: Union-Find on each processor: For each input

edge, BUF conducts the union operation of Union-Find, up-

dating the parent pointers. After that, BUF conducts the find

operation with path compression for each vertex in the hash

table. As a result, each connected component of the subgraph

induced by the input edges forms a star graph, where the root

vertex is the only parent of the other vertices. Fig. 4b shows the

star graph computed by Union-Find on the graph in Fig. 4a.

Note that any sequential Union-Find algorithm can be used

here, but we use Rem [39] because it is known to be the

fastest so far.

3) Step 2: Rebalancing parent pointers: As a result of Step
1, all vertices in each star graph point to its root vertex. For

example, all vertices in Fig. 4b point to vertex 2. BUF converts

each star graph into a balanced tree for load balancing. Note

that vertices are colorized by the hash function ξ. For each

star graph, BUF modifies the parent pointer of each vertex

to point to the local root, which is the most preceding vertex

among vertices with the same color, and the parent pointers of

local roots to point to the root. Fig. 4c shows the balanced tree

computed from the star graph in Fig. 4b. Vertices 4 and 5 are

local roots of green and red vertices, respectively. Accordingly,

green vertices point to vertex 4, and red vertices point to vertex

5. Vertices 4 and 5 point to vertex 2, the root.

The pseudocode of Balanced Union-Find is listed in Al-

gorithm 3. The BalancedUnionFind function has each

processor i receive edges E′
i through the network and conducts

two functions Union-Find and Rebalancing sequen-

tially. Union-Find is used to integrate the received edges

E′
i into the local graph Gi, and Rebalancing is a critical

step that ensures the balanced distribution of vertices across

processors. Given an arbitrary edge set E� and a graph G′,
Union-Find incorporates each edge (u, v) one by one into

the graph G′ by linking the root m(Λ(u,G′)) of u and the

root m(Λ(v,G′)) of v. After that, a path compression is

conducted locally so that each connected component forms

a star graph. Then, Rebalancing re-updates the parent

pointers of each vertex u in V ′ for load balancing. If u is

not the local root (i.e., m([Λ(u,G′)]ξ(u))), the parent pointer

of u is updated to m([Λ(u,G′)]ξ(u)). Otherwise, it is updated
to m(Λ(u,G′)) representing the root vertex; this condition

addresses the case where local roots are connected to the

root vertex, ensuring a balanced tree structure. For the sake

of intelligibility, the pseudocode of Union-Find is written

similarly to the standard Union-Find algorithm, but it can be

interchangeable with Rem [39] for better performance, as we

mentioned.

D. Network Communication

This section describes step (5) in Fig. 2 in detail. From the

point of view of processor i, we call a vertex u an outer vertex

if ξ(u) �= i, and an edge (u, v) an outer edge if ξ(u) �= i or
ξ(v) �= i. Conversely, a vertex u with ξ(u) = i is called an

inner vertex. After BUF, each processor sends outer edges to

other processors over the network to inform that the edges

might bridge different trees. In Fig. 4c, the pink edges are

sent over the network because they are outer edges incident to

non-red vertices, which do not belong to processor 2; edges

(5, 2) and (4, 2) are sent to processor 1 (yellow), and edges

(8, 4), (12, 4), and (4, 2) are sent to processor 0 (green). Note

that, without rebalancing, all the edges in Fig. 4b are sent

to processor 1 to which vertex 2 belongs, causing a load

1095

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Balanced Union-Find

1 Function BalancedUnionFind()
2 for i ← 0 to ρ− 1 do in parallel
3 Let Gi = (Vi, Ei) be the graph subject to

processor i
4 Let E′

i be the edges received by processor i via
network

5 Union-Find(E′
i, Gi) � Integrating E′

i into Gi

6 Rebalancing(Gi) � Rebalancing Gi

7 Function Union-Find(E�, G′)
8 for each edge (u, v) ∈ E� do
9 Vi ← V ′ ∪ {u, v}
10 ru ← FindRoot(u, G′)
11 rv ← FindRoot(v, G′)
12 if ru < rv then
13 p(rv, G

′) ← ru

14 else if rv < ru then
15 p(ru, G

′) ← rv

� Path Compression

16 for each vertex u ∈ V ′ do
17 r ← FindRoot(u, G′)
18 a ← u
19 while a �= r do
20 t ← p(a,G′)
21 p(a,G′) ← r
22 a ← t

23 Function FindRoot(u, G′)
24 r ← u
25 while r �= p(r,G′) do
26 r ← p(r,G′)

27 return r

28 Function Rebalancing(G′)
29 for each vertex u ∈ V ′ do
30 if u �= m([Λ(u,G′)]ξ(u)) then
31 p(u,G′) ← m([Λ(u,G′)]ξ(u))

32 else
33 p(u,G′) ← m(Λ(u,G′))

balancing problem. In this example, the number of edges sent

to processor 1 reduces from 6 to 2 by rebalancing.

1) Excluding unchanged edges from network communica-
tion: BTS reduces network traffic by excluding edges not

changed by BUF from network communication if the edge’s

source is not a local root. In Fig. 2, for example, outer edges

(5, 0) and (7, 0) in processor 0 do not change in step (4);

thus, they are not sent over the network in step (5). Excluding

unchanged edges does not affect the final result. Assume

processor i receives an edge (u, v) where ξ(u) = i and

ξ(v) = j or vice versa. If the edge remains in processor i as

it is after BUF, we don’t have to send the edge to processor j
because processor j also has received the edge or already has

it.

Algorithm 4: Network Communication

1 Function NetworkCommunication()
2 for i ← 0 to ρ− 1 do in parallel
3 Let Gi = (Vi, Ei) be the graph subject to

processor i
4 for each vertex u ∈ Vi do
5 if p(u,Gi) is changed by BUF or

u = m([Λ(u,Gi)]ξ(u)) then
6 v ← p(u,Gi)
7 Send (u, v) to processors ξ(u) and ξ(v)

� Discarding spanning edges

8 if ξ(u) �= i then
9 Vi ← Vi \ {u}
10 Ei ← Ei \ {(u, p(u,G′))}

2) Discarding parent pointers of outer vertices: As soon

as the network communication ends, BTS discards all the

parent pointers of outer vertices to secure the memory space.

In other words, BTS discards every edge whose source is an

outer vertex. In Fig. 2, the discarded edges are indicated by

dotted lines. The absence of these edges does not change

the connectivity of the graph because the edges are either

sent to other processors or already exist on other processors.

For example, in step (5) of Fig. 2, edge (6, 1) discarded in

processor 3 is sent to processors 1 and 2, and edge (5, 0)
discarded in processor 0 also exists in processor 2. After

discarding those edges, each processor keeps only the parent

pointers of the vertices belonging to the processor in memory,

occupying O(|V |/ρ) space in expectation.

The pseudocode for step (5), Network Communication,

is presented in Algorithm 4. For each processor i where

Gi = (Vi, Ei) represents the local graph associated with the

processor, the algorithm checks each vertex u in Vi whether

the parent pointer for u, denoted as p(u,Gi), has been altered

by a preceding BUF operation or if u is m([Λ(u,Gi)]ξ(u)). In
either case, the algorithm send the edge (u, v) to processors

ξ(u) and ξ(v) where v = p(u,Gi) through the network.

Additionally, the algorithm removes the edge (u, v) from Gi

to secure the memory space if u does not belong to processor

i, i.e., ξ(u) �= i. This ensures that each processor maintains a

consistent and up-to-date view of its local graph, facilitating

efficient communication and synchronization across the pro-

cessors.

E. Iteration Process & Finalization

This section describes steps (6) and (7) in Fig. 2 in detail.

When each processor receives edges, it uses the edges to

update the parent pointers through steps 1 and 2 of BUF. If

updated edges exist, they are sent again over the network. This

process repeats until no more edges are updated. When the

1096

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: Path Compression

1 Function PathCompression()
2 for i ← 0 to ρ− 1 do in parallel
3 Let Gi = (Vi, Ei) be the graph subject to

processor i
4 for each vertex u ∈ Vi do
5 r ← FindRoot(u, Gi) � In Algorithm 3

� Linking vertices on the path to the root

to the root

6 a ← u
7 while a �= r do
8 t ← p(a,Gi)
9 p(a,Gi) ← r
10 a ← t

iteration process ends, all vertices belonging to each processor

form star graphs where the centers are local roots, and the star

graphs include the root vertices (see the output of step (6) in

Fig. 2). Finally, step (7) has each processor update the parent

pointers to point to the root without network communication.

1) Termination Detection: How can we efficiently know if a

change has occurred on each processor? A simple method is to

back up all edges before updating them and compare them with

updated ones. However, in this case, not only does it consume

additional memory space, but it also incurs computational

overhead because it requires checking that a change has

occurred for every edge. To track changes efficiently, BUF

marks ‘updated’ on each vertex if its parent pointer has

changed in step 1 (Union-Find). After step 2 (Rebalancing)

of BUF, each processor counts how many vertices marked

with ‘updated’ are outer vertices or have their parent outer

vertices. This is the number of edges changed in the processor.

In Fig. 4, for example, all edges except for (12, 2) in processor

2 are marked ‘updated’ in step 1; and after step 2, only

(8, 4), (12, 4), (4, 2), and (5, 2) are counted as changed. Each

processor broadcasts the number of changed edges to other

processors. If the number of changed edges in all processors

is 0, the iteration process ends.

Algorithm 5 outlines the pseudocode for step (7), Path

Compression. Assuming Gi = (Vi, Ei) represents the local

graph associated with processor i, the PathCompression
function finalizes the linkage of each vertex u in Vi to the root

vertex. This linkage is established after Gi forms a balanced

tree structure in step (6) through the execution of Balanced

Union-Find. Within each processor, the function utilizes the

FindRoot function from Algorithm 3 to identify the root

vertex of u. Subsequently, it updates the vertices along the

path from u to its root, effectively compressing the path.

This compression is achieved by updating the parent pointer

of each vertex to directly point to the root. Importantly, the

PathCompression function operates independently within

each processor, and as such, network communication is not

required.

F. Analysis

In this section, we present theoretical analyses of BTS. We

first show that BTS guarantees load balancing by bounding

the number of children a vertex can have.

Theorem 1. The maximum number of children a vertex can
have in the union of all balanced trees after BUF is O(ρ2 +
|V |/ρ) in expectation where ρ is the number of processors and
|V | is the number of vertices in the graph.
Proof. After BUF, each processor has a forest of balanced

trees. A balanced tree has three kinds of vertices: the root, local

roots, and the other vertices. The children of a root are either

local roots or vertices with the same color as the root. The

children of a local root have the same color as the local root.

A vertex that is neither a root nor a local root of a balanced

tree has no child. The expected number of vertices with a

specific color is O(|V |/ρ) since the vertices are colorized by

a random hash function. The maximum number of local roots

in a balanced tree is ρ − 1. A vertex can be the root of ρ
different balanced trees across the processors. Accordingly,

the maximum number of child vertices a vertex can have in

the union of all balanced trees is ρ(ρ − 1) + O(|V |/ρ) =
O(ρ2 + |V |/ρ).
The rebalancing of BUF also reduces network traffic signifi-

cantly.

Lemma 2. BTS without rebalancing requires (|V | − C) ×
ρ−1
ρ network communication in expectation upon convergence
where |V | and |C| are the numbers of vertices and connected
components, respectively, in the graph and ρ is the number of
processors.

Proof. Upon convergence, every vertex u resides in processor

ξ(u), and its parent pointer p(u) points to the root v after

BUF without rebalancing. If ξ(u) �= ξ(v), processor ξ(u)
sends edge (u, v) to processor ξ(v). The probability that

ξ(u) �= ξ(v) is (ρ − 1)/ρ since the vertices are randomly

colorized. The number of root vertices equals the number C of

connected components. Thus, the expected amount of network

communication is the number |V | − C of non-root vertices

times the probability ρ−1
ρ that two vertices have different

colors.

Lemma 3. BTS with rebalancing requires at most C × (ρ −
1) network communication upon convergence where C is the
number of connected components in the graph and ρ is the
number of processors.

Proof. Suppose that the graph has been converged by BUF

with rebalancing. In contrast to BUF without rebalancing, only

local roots point to its root, and the other vertices point to

its local root. That is, inner vertices that are not local roots

do not incur network communication. For each local root u
and its root v, processor ξ(u) sends edge (u, v) to processor

ξ(v). Each connected component has at most ρ−1 local roots

excluding the root. Thus, the maximum amount of network

communication is C × (ρ− 1).

1097

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The theoretical results

D-Rem [31],
ALBUF [32]

BTS

Maximum number of
children a vertex has

O(|V |) O(ρ2 + |V |/ρ)
Network
communication per
round

O((|V | − C)× ρ−1
ρ

) O(C × (ρ− 1))

Memory space per
processor

O(|V |+ |E|) O((|V |+ |E|)/ρ)

From the two lemmas above, we get how much rebalancing

of BUF reduces network traffic.

Theorem 4. Rebalancing reduces network traffic by a factor
of |V |−C

Cρ in expectation upon convergence where |V | and
C are the numbers of vertices and connected components,
respectively, in the graph and ρ is the number of processors.

Proof. By Lemmas 2 and 3, the rebalancing reduces network

traffic by a factor of
(|V |−C)× ρ−1

ρ

C×(ρ−1) = |V |−C
Cρ .

Rebalancing edges and discarding parent pointers of outer

vertices together bound memory usage of each processor to

O((|V |+ |E|)/ρ).
Theorem 5. BUF has each processor occupy O((|V |+|E|)/ρ)
memory space in expectation where |V | and |E| are the
numbers of vertices and edges in the graph and ρ is the number
of processors.

Proof. Each processor i maintains the parent pointers of

vertices belonging to it, and the expected number of such

vertices is |V |/ρ since vertices are assigned by a random

hash function. Processor i receives edges incident to vertices

belonging to it. We let the edge set and its size be Ei and |Ei|,
respectively. Assuming that the edges are evenly distributed,

the expected number of |Ei| is |E|(2ρ−1)/ρ2 since the prob-

ability that at least one vertex of an edge belongs to a specific

processor is 1 − (1 − 1/ρ)2 = (2ρ − 1)/ρ2. Then, processor
i has to maintain the parent pointers of outer vertices in the

subgraph induced by |Ei|. The number of outer vertices in the

induced subgraph is at most |Ei| because each edge always

has an inner vertex. Thus, processor i additionally requires

|Ei| = |E|(2ρ− 1)/ρ2 memory space. Totally, each processor

i occupies |V |/ρ+|E|(2ρ−1)/ρ2 = O((|V |+|E|)/ρ) memory

space in expectation.

In practice, each processor occupies O(|V |/ρ) memory space

as edge redistribution, described in Section IV-B, significantly

reduces the number of edges. Accordingly, the number of outer

edges is less than that of inner vertices in subsequent rounds.

For example, in Fig. 7, the number of outer edges in round 1

is about 1 million, far less than 988.5 million, the number of

vertices in the graph, SD.

Table III shows that BTS demonstrates superior theoretical

results compared to D-Rem [31] and ALBUF [32]. Since

neither D-Rem nor ALBUF addresses the load balancing

problem, they have an identical theoretical outcome.

TABLE IV: The summary of datasets

Datasets |V | |E| Sources

LJ 4.8M 69M SNAP* [44]

TW 41.7M 1.5B Kwak et al.* [45]
FS 65.6M 1.8B SNAP

SD 89.2M 2B WebDataCommons* [46]

GSH 988.5M 33.9B WebGraph* [47]

RMAT-21 1.1M 31.5M

N/A
(Synthetic
graphs)

RMAT-23 4.1M 125.8M
RMAT-25 15.2M 503.3M
RMAT-27 56.1M 2B
RMAT-29 207M 8B
RMAT-31 762.8M 32.2B

V. EXPERIMENTS

In this section, we experimentally evaluate the performance

of BTS by answering the following questions:

Q1 How well does BTS balance the workload? (Section V-B)

Q2 How much network traffic does BTS reduce? (Section V-C)

Q3 How much memory space does BTS require? (Sec-

tion V-D)

Q4 How does BTS scale up in terms of the input data size and

the number of machines? (Section V-E)

Q5 How well does BTS work on real-world graphs? (Sec-

tion V-F)

A. Setup

1) Datasets: Table IV shows both real-world and synthetic

graphs we use in the experiments. LJ is a friendship network

in LiveJournal. TW is a follower-following network in Twitter.

FS is a friendship network in Friendster. SD is a domain-level

hyperlink network. GSH is a page-level hyperlink network.

RMAT-k for k ∈ {21, 23, 25, 27, 29, 31} graphs are realistic

synthetic graphs that follow the Recursive Matrix model [42];

we generate RMAT-k graphs using TegViz [43], an RMAT

graph generating tool. We set RMAT parameters (a, b, c, d) =

(0.57, 0.19, 0.19, 0.05).

2) Algorithms: We implement BTS using Message Passing

Interface (MPI). We also test the algorithms written in bold

in Table I; the other algorithms are excluded because at least

one of the tested algorithms outperforms them. All distributed-

memory algorithms considered in our experiments, such as D-

Rem, D-Galois, and FastSV, are also based on MPI. We use

the source codes written by the authors of the algorithms; all

of them are available on the Web.

• BTS: the proposed distributed-memory Union-Find algo-

rithm.

• ConnectIt [35]: the state-of-the-art multi-core algorithm.

• Mosaic [17]: the-state-of-the-art external-memory algorithm.

• D-Rem [31]: the representative distributed Union-Find algo-

rithm.

*http://snap.stanford.edu/data/
*http://an.kaist.ac.kr/traces/WWW2010.html
*http://webdatacommons.org/hyperlinkgraph/
*https://law.di.unimi.it/datasets.php

1098

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

• D-Galois [18]: the state-of-the-art distributed label propaga-

tion algorithm.

• FastSV [41]: the state-of-the-art distributed linear algebraic

algorithm.

• PACC [21]: the state-of-the-art MapReduce algorithm.

3) Machines: We use a cluster consisting of a storage server

and 10 computing machines; each is equipped with an Intel

Xeon E3-1220 CPU (4-cores at 3.10GHz), 16GB RAM, 2

12TB HDDs. The machines are connected to a local network

switch with 1Gbps ethernet speed. The storage server has 8

12TB HDD in RAID 6 and is connected to the same network

switch with 5Gbps ethernet speed by Link Aggregation Con-

trol Protocol (LACP). MPICH v3.3 is installed on the cluster

with all 10 machines and one of them acts as a master. We

test single-machine algorithms on the master machine.

B. Load Balancing

BTS resolves the load balancing problems by rebalancing

edges as described in Section IV-C. To show the effect of

rebalancing edges, we implement three versions of BTS: (a)

BTS without rebalancing edges (BTS-nobal), (b) BTS which

rebalances edges only at the initial step (BTS-init), and (c)

the original BTS which rebalances edges every round. BTS-

nobal can be regarded as a variation of D-Rem [31] to which

the network communication optimization technique of BTS is

applied. BTS-init improves BTS-nobal with a load balancing

strategy of ALBUF [32]. Since the source code of ALBUF is

not publicly available, we consider BTS-init as a variation of

ALBUF. Fig. 5 is a gantt chart showing the running time of

10 processors in the three versions of BTS. The steps listed

in Fig. 2 are color-coded. SD is used. In each step, BTS

synchronizes the processors; processors that have completed

their work wait for the other processors to finish. Empty parts

of the running time bars in Fig. 5 mean that the processors are

idle or just receiving data from others. More empty parts of

the running time bars suggest more serious load balancing

problems. Fig. 5a shows that BTS-nobal suffers from load

balancing problems; processor 0 is idle for 68.6% of its total

running time. Since most of the network communication is

concentrated on processor 0, the running time of the other

processors for network communication is considerably long

(see orange bars). This argument is supported by the fact that

processor 0 has the longest running time for updating parent

pointers (see dark blue bars). Fig. 5b shows that rebalancing

edges at the initial step (BTS-init) alleviates a load balancing

problem at that step. However, due to repeated updates of

parent pointers, edges are concentrated on a small number

of vertices again, and the load balancing problems reappear,

indicating ALBUF [32] does not resolve the load balancing

problems perfectly as the round proceeds. The original BTS

eliminates the load balancing problems by rebalancing edges

every round (see Fig. 5c). Compared to BTS-nobal and BTS-
init, the original BTS dramatically reduces the running time for

network communication by 522 and 553 times, respectively;

accordingly, the total running time decreases by 2.7 and 2.5

times, respectively.

C. Network Traffic

BTS reduces network traffic in two ways: rebalancing edges

and excluding unchanged edges from network traffic. To show

how much network traffic the methods reduce, we compare

three versions of BTS: (a) BTS that neither rebalances edges

nor excludes unchanged edges, (b) BTS that rebalances edges

but does not exclude unchanged edges, and (c) the original

BTS. It is worth noting that (a) and (b) can be regarded

as implementations of D-Rem [31] and an improved version

of ALBUF [32] within our framework, respectively; while

ALBUF rebalances edges only at the initial step, (b) rebalances

edges in every round, further reducing data traffic. Fig. 6

shows how many edges 10 processors send and receive for

each round in the three versions of BTS. SD is used. Without

rebalancing edges, processors differ by up to a factor of

14.4 and 29.6 in the numbers of edges sent and received,

respectively, implying a load balancing problem (see red and

blue lines). Edge rebalancing resolves the load balancing

problem and significantly reduces the numbers of sent and

received edges by a factor of 121.2 in round 1 and up to

514.3 in the subsequent rounds (see pink and sky blue lines).

Excluding unchanged edges from network communication,

the original BTS further decreases the numbers of sent and

received edges by a factor of 3.3 (see orange and green lines).

D. Memory Usage

BTS reduces memory consumption in two ways: rebalanc-

ing edges and discarding outer edges. To show how BTS is

well-balanced by discarding outer edges so that reduce a large

amount of memory, we compare three versions of BTS: (a)

BTS that neither rebalances edges nor discards outer edges

(red lines), (b) BTS that rebalances edges but does not discard

outer edges (blue lines), and (c) the original BTS (black lines).

Each processor stores the parent pointers of all vertices in

memory, and outer edges take up memory additionally. So,

Fig. 7 shows the number of outer edges in each processor

immediately after network communication of each round to

measure memory overhead. The initialization round is omitted

from this figure because it works on chunked edges. The result

shows that rebalancing edges dramatically reduces the number

of outer edges by up to a factor of 71.2, and discarding outer

edges further reduces the number of outer edges by up to a

factor of 21.8.

E. Scalability

We compare BTS to the other algorithms written in bold

in Table I in terms of data and machine scalability in Fig. 8.

Fig. 8a shows each algorithm’s running time on various sized

RMAT graphs listed in Table IV. Both axes are in a log

scale. BTS scales up almost linearly with a slope of 0.94 and

shows the fastest performance on graphs of any size; BTS

is 3.1 to 163.3 times faster than other algorithms. Due to

out-of-memory errors, the algorithms except BTS and PACC

fail to process graphs larger than certain sizes. BTS and

PACC handle 16 to 1024 times larger graphs than other

algorithms. Meanwhile, BTS is 8 to 55.4 times faster than

1099

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

(a) BTS-nobal (b) BTS-init (c) BTS

Fig. 5: Gantt chart showing the running time of 10 processors in three variations of BTS: (a) BTS without rebalancing edges,

(b) BTS that rebalances edges only at the initial step, and (c) the original BTS, which rebalances edges every round. The

steps listed in Fig. 2 are color-coded. Empty parts in bars indicate that the processors are idle or just receiving data from

others. The original BTS resolves load balancing problems of BTS-nobal and BTS-init, reducing the running time for network

communication by 522× and 553×, respectively.

Fig. 6: The number of edges 10 processors send and receive

for three methods; (a) BTS that neither rebalances edges nor

excludes unchanged edges, (b) BTS that rebalances edges but

does not exclude unchanged edges, and (c) the original BTS.

While (a) suffers from a load balancing problem, (b) greatly

reduces the network traffic by up to 514.3× and (c) further

decreases the network traffic by up to 3.3×.

PACC. PACC is relatively slow due to a large amount of

data shuffling, which causes massive disk and network I/Os.

ConnectIt [35], the state-of-the-art algorithm that implements

Union-Find in parallel, reportedly succeeds in handling 100

billion edges by exploiting an expensive server computer with

72 cores and 1TB memory. In our experimental environment

where machines have moderate cores and memory, however,

ConnectIt fails to handle graphs with more than 500 million

edges, implying that ConnectIt requires a lot of memory.

Fig. 8b shows the machine scalability of all the distributed

algorithms written in bold in Table I: BTS, D-Rem, D-Galois,

FastSV, and PACC. TW is used. D-Galois and FastSV are

omitted because they fail to process TW because of out-

Fig. 7: The number of outer edges for (a) BTS that neither

rebalances edges nor discards outer edges (red), (b) BTS that

rebalances edges but does not discard outer edges (blue),

and (c) the original BTS (black). The original BTS reduces

the number of outer edges by a factor of 1552. Each line

corresponds to a processor; each color has 10 lines, while

blue and black lines perfectly overlap, implying that (b) and

(c) are well balanced.

of-memory errors. We test on the numbers 2, 4, 6, 8, and

10 of machines. Both axes are in a log scale. BTS shows

almost linear scalability; the slope is −0.81, meaning that

doubling the number of machines decreases the running time

by 2−0.81 = 1.75 times. The slopes of D-Rem and PACC

are -0.42 and -0.72, respectively. Regardless of the number

of machines, BTS is always the best, showing up to 9.6 and

16.5 times faster performance than the competitive algorithms,

D-Rem and PACC, respectively.

F. On Real-World Graphs

We compare BTS to the algorithms written in bold in

Table I on all real-world graphs in Table IV. Fig. 9 shows

the running time of all algorithms in a log scale. Methods

1100

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 8: (a) Data scalability of all algorithms on various sized RMAT graphs. BTS is 3.1 to 163.3 times faster and handles

16 to 1024 times larger graphs than other algorithms. (b) Machine scalability of all distributed algorithms. BTS is the fastest

regardless of the number of machines, showing 9.6× and 16.5× faster speeds than D-Rem and PACC, respectively.

Fig. 9: The running time of all algorithms. BTS is the fastest

showing up to 261.9 times faster speed.

with o.o.m. for some datasets mean they fail to handle the

datasets due to out-of-memory errors. Only BTS and PACC

succeed in processing all the graphs, while BTS is 3.8 to 48.8

times faster than PACC. On LJ, which is the only graph that

all algorithms succeed in handling, BTS outperforms all the

algorithms reducing the running time by a factor of 4.6 (D-

Galois) to 261.9 (FastSV).

Fig. 10 shows the memory usage of all algorithms in a

log scale. Boxes indicate the average peak memory usage of

10 processors, and error bars do the maximum and minimum

values. ConnectIt and Mosaic don’t have error bars as they are

shared-memory algorithms. On every graph, BTS requires the

least amount of memory, and the difference in memory usage

between processors is negligible, at most 1.5 times. Loading

the input graph into memory, ConnectIt, D-Galois, and FastSV

use a lot of memory by 16.8 to 40.2 times BTS’s. Mosaic uses

a lot of memory to manage states even though it is an external

algorithm; we have tried various parameters according to the

authors’ guideline, but in the end, it fails to process FS, SD,

and GSH. Loading only parent pointers and boundary edges in

memory, D-Rem uses relatively little memory but still uses 3.1

to 8.2 times more memory than BTS; BTS reduces memory

usage by rebalancing edges and discarding outer edges. PACC

is measured to use a similar amount of memory on TW, FS,

Fig. 10: Box: the average peak memory usage of 10 pro-

cessors. Error bar: the maximum and minimum values. BTS

consumes the least amount of memory on all graphs.

SD, and GSH, which appears to be due to the lazy garbage

collection of Java.

VI. CONCLUSION

In this paper, we propose BTS, a fast and scalable dis-

tributed Union-Find algorithm for finding connected compo-

nents in large graphs. BTS introduces Balanced Union-Find,

which rebalances edges to efficiently resolve load balancing

problems, reducing the running time for network commu-

nication by 553 times and shrinking network traffic and

memory usage simultaneously by up to 514.3 and 71.2 times,

respectively. BTS further decreases network traffic by up to

3.3 times by excluding unchanged edges and memory usage

by up to 21.8 times by discarding outer edges. As a result, BTS

outperforms the state-of-the-art algorithms by processing 16-

1024 times larger graphs with 3.1-261.9 times faster speeds.

ACKNOWLEDGEMENT

This work was funded by the Korea Meteorological Admin-

istration Research and Development Program ”Developing In-

telligent Assistant Technology and Its Application for Weather

Forecasting Process” under Grant (KMA2021-00123). Ha-

Myung Park is the corresponding author.

1101

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Lim, U. Kang, and C. Faloutsos, “Slashburn: Graph compression
and mining beyond caveman communities,” TKDE, vol. 26, no. 12, pp.
3077–3089, 2014.

[2] U. Kang and C. Faloutsos, “Beyond ’caveman communities’: Hubs and
spokes for graph compression and mining,” in ICDM. IEEE Computer
Society, 2011, pp. 300–309.

[3] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, 2009.

[4] K. Wu, E. J. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Analysis and Applications,
vol. 12, no. 2, pp. 117–135, 2009.

[5] R. Jin, N. Ruan, Y. Xiang, and H. Wang, “Path-tree: An efficient
reachability indexing scheme for large directed graphs,” TODS, vol. 36,
no. 1, pp. 7:1–7:44, 2011.

[6] S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum, “FERRARI:
flexible and efficient reachability range assignment for graph indexing,”
in ICDE. IEEE Computer Society, 2013, pp. 1009–1020.

[7] G. Even, J. Naor, S. Rao, and B. Schieber, “Fast approximate graph
partitioning algorithms,” SICOMP, vol. 28, no. 6, pp. 2187–2214, 1999.

[8] Y. Lim, W. Lee, H. Choi, and U. Kang, “MTP: discovering high quality
partitions in real world graphs,” WWW, vol. 20, no. 3, pp. 491–514,
2017.

[9] D. A. Bader and G. Cong, “A fast, parallel spanning tree algorithm for
symmetric multiprocessors (smps),” JPDC, vol. 65, no. 9, pp. 994–1006,
2005.

[10] R. A. Pearce, M. B. Gokhale, and N. M. Amato, “Multithreaded
asynchronous graph traversal for in-memory and semi-external memory,”
in SC. IEEE, 2010, pp. 1–11.

[11] C. Jain, P. Flick, T. Pan, O. Green, and S. Aluru, “An adaptive parallel
algorithm for computing connected components,” TPDS, vol. 28, no. 9,
pp. 2428–2439, 2017.

[12] M. Asokan, “A robust, efficient, and balanced parallel algorithm for
finding connected components,” in BigData. IEEE, 2019, pp. 2113–
2118.

[13] X. Feng, L. Chang, X. Lin, L. Qin, and W. Zhang, “Computing
connected components with linear communication cost in pregel-like
systems,” in ICDE. IEEE Computer Society, 2016, pp. 85–96.

[14] X. Feng, L. Chang, X. Lin, L. Qin, W. Zhang, and L. Yuan, “Distributed
computing connected components with linear communication cost,”
Distributed Parallel Databases, vol. 36, no. 3, pp. 555–592, 2018.

[15] Y. Shiloach and U. Vishkin, “An o(log n) parallel connectivity algo-
rithm,” Journal of Algorithms, vol. 3, no. 1, pp. 57–67, 1982.

[16] D. Zheng, D. Mhembere, R. C. Burns, J. T. Vogelstein, C. E. Priebe, and
A. S. Szalay, “Flashgraph: Processing billion-node graphs on an array
of commodity ssds,” in FAST. USENIX Association, 2015, pp. 45–58.

[17] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“Mosaic: Processing a trillion-edge graph on a single machine,” in
EuroSys. ACM, 2017, pp. 527–543.

[18] R. Dathathri, G. Gill, L. Hoang, H. Dang, A. Brooks, N. Dryden,
M. Snir, and K. Pingali, “Gluon: a communication-optimizing substrate
for distributed heterogeneous graph analytics,” in PLDI. ACM, 2018,
pp. 752–768.

[19] R. Kiveris, S. Lattanzi, V. S. Mirrokni, V. Rastogi, and S. Vassilvitskii,
“Connected components in mapreduce and beyond,” in SoCC. ACM,
2014, pp. 18:1–18:13.

[20] H. Park, N. Park, S. Myaeng, and U. Kang, “Partition aware connected
component computation in distributed systems,” in ICDM. IEEE
Computer Society, 2016, pp. 420–429.

[21] H.-M. Park, N. Park, S.-H. Myaeng, and U. Kang, “Pacc: Large scale
connected component computation on hadoop and spark,” PLOS ONE,
vol. 15, no. 3, pp. 1–25, 03 2020.

[22] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. D. Sarma, “Finding
connected components in map-reduce in logarithmic rounds,” in ICDE.
IEEE Computer Society, 2013, pp. 50–61.

[23] S. Liu and R. E. Tarjan, “Simple concurrent labeling algorithms for
connected components,” in SOSA, ser. OASIcs, J. T. Fineman and
M. Mitzenmacher, Eds., vol. 69. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 3:1–3:20.

[24] S. C. Liu and R. E. Tarjan, “Simple concurrent connected components
algorithms,” ACM TOPC, vol. 9, no. 2, pp. 9:1–9:26, 2022.

[25] G. Guo, H. Chen, D. Yan, J. Cheng, J. Y. Chen, and Z. Chong, “Scalable
de novo genome assembly using a pregel-like graph-parallel system,”
IEEE ACM TCBB, vol. 18, no. 2, pp. 731–744, 2021.

[26] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu, “Pregel algorithms
for graph connectivity problems with performance guarantees,” VLDB,
vol. 7, no. 14, pp. 1821–1832, 2014.

[27] Y. Zhang, A. Azad, and A. Buluç, “Parallel algorithms for finding
connected components using linear algebra,” JPDC, vol. 144, pp. 14–27,
2020.

[28] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-scale
graph mining system,” in ICDM. IEEE Computer Society, 2009, pp.
229–238.

[29] G. Cybenko, T. G. Allen, and J. E. Polito, “Practical parallel union-find
algorithms for transitive closure and clustering,” International Journal
of Parallel Programming, vol. 17, no. 5, pp. 403–423, 1988.

[30] J. Iverson, C. Kamath, and G. Karypis, “Evaluation of connected-
component labeling algorithms for distributed-memory systems,” Par-
allel Computing, vol. 44, pp. 53–68, 2015.

[31] F. Manne and M. M. A. Patwary, “A scalable parallel union-find algo-
rithm for distributed memory computers,” in PPAM, R. Wyrzykowski,
J. J. Dongarra, K. Karczewski, and J. Wasniewski, Eds., vol. 6067.
Springer, 2009, pp. 186–195.

[32] J. Xu, H. Guo, H. Shen, M. Raj, X. Wang, X. Xu, Z. Wang, and
T. Peterka, “Asynchronous and load-balanced union-find for distributed
and parallel scientific data visualization and analysis,” TVCG, vol. 27,
no. 6, pp. 2808–2820, 2021.

[33] R. J. Anderson and H. Woll, “Wait-free parallel algorithms for the union-
find problem,” in STOC. ACM, 1991, pp. 370–380.

[34] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K. Wu, “Work-efficient
parallel union-find,” Concurrency Computation Practice and Experience,
vol. 30, no. 4, 2018.

[35] L. Dhulipala, C. Hong, and J. Shun, “Connectit: A framework for static
and incremental parallel graph connectivity algorithms,” CoRR, vol.
abs/2008.03909, 2020.

[36] P. K. Agarwal, L. Arge, and K. Yi, “I/o-efficient batched union-find and
its applications to terrain analysis,” TALG, vol. 7, no. 1, pp. 11:1–11:21,
2010.

[37] M. M. A. Patwary, J. R. S. Blair, and F. Manne, “Experiments on union-
find algorithms for the disjoint-set data structure,” in SEA, ser. Lecture
Notes in Computer Science, vol. 6049. Springer, 2010, pp. 411–423.

[38] R. E. Tarjan and J. van Leeuwen, “Worst-case analysis of set union
algorithms,” JACM, vol. 31, no. 2, pp. 245–281, 1984.

[39] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
[40] A. Azad and A. Buluç, “LACC: A linear-algebraic algorithm for finding

connected components in distributed memory,” in IPDPS. IEEE, 2019,
pp. 2–12.

[41] Y. Zhang, A. Azad, and Z. Hu, “Fastsv: A distributed-memory connected
component algorithm with fast convergence,” in PPSC. SIAM, 2020,
pp. 46–57.

[42] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SIAM. SIAM, 2004, pp. 442–446.

[43] B. Jeon, I. Jeon, and U. Kang, “Tegviz: Distributed tera-scale graph
generation and visualization,” in ICDMW. IEEE Computer Society,
2015, pp. 1620–1623.

[44] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[45] H. Kwak, C. Lee, H. Park, and S. B. Moon, “What is twitter, a social
network or a news media?” in WWW, M. Rappa, P. Jones, J. Freire, and
S. Chakrabarti, Eds. ACM, 2010, pp. 591–600.

[46] (2012) Webscope. [Online]. Available: http://webdatacommons.org/
hyperlinkgraph/

[47] (2015) Webgraph. [Online]. Available: http://law.di.unimi.it/datasets.php

1102

Authorized licensed use limited to: Kookmin University. Downloaded on August 20,2024 at 08:33:16 UTC from IEEE Xplore. Restrictions apply.

